Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Mos2 As A Co-Catalyst For Photocatalytic Hydrogen Production From Water, Bing Han, Yun Hang Hu Nov 2016

Mos2 As A Co-Catalyst For Photocatalytic Hydrogen Production From Water, Bing Han, Yun Hang Hu

Michigan Tech Publications

Solar-to-hydrogen conversion based on photocatalytic water splitting is a promising pathway for sustainable hydrogen production. The photocatalytic process requires highly active, inexpensive, and earth-abundant materials as photocatalysts. As a presentative layer-structured transition metal dichalcogenides, molybdenum disulfide (MoS2) is attracting intensive attention due to its unique electro and photo properties. In this article, we comprehensively review the recent research efforts of exploring MoS2 as a co-catalyst for photocatalytic hydrogen production from water, with emphasis on its combination with CdS, CdSe, graphene, carbon nitride, TiO2, and others. It is shown that MoS2–semiconductor composites are promising photocatalysts for hydrogen evolution from water under …


Evaluation Of Voc Degradation In Photo-Catalytic Air Reactors: Tio2 Immobilization, Energy Efficiency And Kinetic Modeling, Cristina S. Lugo Vega Aug 2016

Evaluation Of Voc Degradation In Photo-Catalytic Air Reactors: Tio2 Immobilization, Energy Efficiency And Kinetic Modeling, Cristina S. Lugo Vega

Electronic Thesis and Dissertation Repository

The high VOC emissions from anthropogenic sources are detrimental to both the environment and humans, contributing with ground-level ozone and particle matter formation. Heterogeneous photocatalysis provides significant potential for VOC degradation. However, the approaches to be used for photocatalyst immobilization in scaled and highly efficient photoreactors are still not well established. Furthermore, there is a lack of reported photonic efficiencies and a shortage of required methods to establish these efficiencies.

To address these issues, this PhD Dissertation reports the study of photonic efficiencies, TiO2 immobilization on a stainless steel mesh and kinetic models in a scaled-up Photo-CREC-Air Reactor. Acetone …


Crumpled Graphene Oxide: Aerosol Synthesis And Environmental Applications, Yi Jiang Aug 2016

Crumpled Graphene Oxide: Aerosol Synthesis And Environmental Applications, Yi Jiang

McKelvey School of Engineering Theses & Dissertations

Environmental technologies, such as for water treatment, have advanced significantly due to the rapid expansion and application of nanoscale material science and engineering. In particular, two-dimensional graphene oxide (GO), has demonstrated considerable potential for advancing and even revolutionizing some of these technologies, such as engineered photocatalysts and membranes. To realize such potential, an industrially scalable process is needed to produce monomeric and aggregation-resistant GO nanostructures/composites, in addition to new knowledge of material properties, behavior, and performance within an environmental context.

Research presented in this thesis addresses both scientific and engineering gaps through the development of a simple, yet robust aerosol-based …


The Design And Testing Of A Novel Batch Photocatalytic Reactor And Photocatalyst, Shawn Sasser Jun 2016

The Design And Testing Of A Novel Batch Photocatalytic Reactor And Photocatalyst, Shawn Sasser

USF Tampa Graduate Theses and Dissertations

With an ever-increasing human population, the importance in having sustainable energy resources is becoming increasingly evident, as the current energy habits have brought about massive atmospheric pollution in the form of CO2 emissions, resulting in a rise in the average global temperature. To battle the effects of climate change, many alternative energy resources have been investigated. Among these, photocatalytic conversion of CO2 to renewable hydrocarbon fuels such as methane and methanol is one of the most desirable, as it provides the opportunity to utilize the sun’s energy to convert CO2 to renewable fuels. The work in this …


Investigating The Influence Of Gold Nanoparticles On The Photocatalytic And Catalytic Reactivity Of Porous Tungsten Oxide Microparticles, Daniel P. Depuccio Jan 2016

Investigating The Influence Of Gold Nanoparticles On The Photocatalytic And Catalytic Reactivity Of Porous Tungsten Oxide Microparticles, Daniel P. Depuccio

Graduate College Dissertations and Theses

Tungsten oxide (WO3) is a semiconducting transition metal oxide with interesting electronic, structural, and chemical properties that have been exploited in applications including catalysis, gas sensing, electrochromic displays, and solar energy conversion. Nanocrystalline WO3 can absorb visible light to catalyze heterogeneous photooxidation reactions. Also, the acidity of the WO3 surface makes this oxide a good thermal catalyst in the dehydration of alcohols to various industrially relevant chemicals. This dissertation explores the photocatalytic and thermal catalytic reactivity of nanocrystalline porous WO3 microparticles. Furthermore, investigations into the changes in WO3 reactivity are carried out after modifying the porous WO3 particles with gold …