Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Preparation Parameters Optimization And Electrocatalytic Properties Of Supported Au Nanoparticles, Rui Yao, Yu-Jiang Song, Huan-Qiao Li, Jia Li, Jian-Guo Liu Apr 2016

Preparation Parameters Optimization And Electrocatalytic Properties Of Supported Au Nanoparticles, Rui Yao, Yu-Jiang Song, Huan-Qiao Li, Jia Li, Jian-Guo Liu

Journal of Electrochemistry

Due to interesting size effect, physical and chemical properties, nano-scale gold materials have been commonly used to catalytic reactions. However, the application of gold nanomaterials in the field of electrocatalysis is limited. Herein, we report the synthesis of gold nanparticles supported on carbon through chemical reduction of HAuCl4 by NaBH4 under mild conditions in the presence of surfactants as soft templates, carbon black or graphene as a support. We investigated a series of key reaction parameters, including reagent concentration, temperature, the types of carbon supports and surfactants. With the optimum synthetic parameters, we successfully obtained supported 1 ~ …


Recent Progresses In Molybdenum-Based Electrocatalysts For The Hydrogen Evolution Reaction, Ze-Xing Wu, Jie Wang, Jun-Po Guo, Jing Zhu, De-Li Wang Apr 2016

Recent Progresses In Molybdenum-Based Electrocatalysts For The Hydrogen Evolution Reaction, Ze-Xing Wu, Jie Wang, Jun-Po Guo, Jing Zhu, De-Li Wang

Journal of Electrochemistry

Electrochemical catalytic production of hydrogen has been considered as a promising and sustainable strategy for clean and renewable energy technologies. Molybdenum-based non noble metal catalysts for the hydrogen evolution reaction have attracted extensive attention due to its effective catalytic performance. In this review, the recent progresses in molybdenum-carbide, phosphide, nitride and sulfide electrocatalysts are presented. In addition, the strategies to improve the catalytic performance are analyzed and the prospects for the future development trends are expected.


Electrochemical Carbon Dioxide Reduction As An Alternative Source Of Fuels And Chemicals, Kendra Kuhl, Etosha Cave, George Leonard, Daniel Diaz, Nicholas Flanders Apr 2016

Electrochemical Carbon Dioxide Reduction As An Alternative Source Of Fuels And Chemicals, Kendra Kuhl, Etosha Cave, George Leonard, Daniel Diaz, Nicholas Flanders

CO2 Summit II: Technologies and Opportunities

Cost-effective electrochemical CO2 recycling (ECO2R), is the holy grail of green chemistry. ECO2R combines just three inputs: CO2, water, and electricity, and converts them into useful products. At commercial scale, this technology could eliminate our dependence on fossil resources by providing an alternative source of carbon-based compounds for fuels and commodity chemicals. However, commercial fuel and chemical production via ECO2R is challenging, because the current state of the technology is not cost-effective enough to compete with conventionally manufactured fuels and chemicals already on the market.

The key cost-drivers of ECO2R are the energy efficiency, product selectivity, and …