Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Modeling Fluid Interactions With Granular And Fibrous Surfaces, Mana Mokhtabad Amrei Jan 2016

Modeling Fluid Interactions With Granular And Fibrous Surfaces, Mana Mokhtabad Amrei

Theses and Dissertations

Understanding the interactions between a body of liquid and a curvy surface is important for many applications such as underwater drag force reduction, droplet filtration, self-cleaning, and fog harvesting, among many others. This study investigates ways to predict the performance of granular and fibrous surfaces for some of the above applications. More specifically, our study is focused on 1) modeling the mechanical stability of the air-water interface over submerged superhydrophobic (SHP) surfaces and their expected drag reduction benefits, and 2) predicting the mechanical stability of a droplet on a fiber in the presence of an external body force. For the …


Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji Jan 2016

Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji

Theses and Dissertations

Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag …


Modeling Time-Dependent Performance Of Submerged Superhydrophobic Or Slippery Surfaces, Ahmed A. Hemeda Jan 2016

Modeling Time-Dependent Performance Of Submerged Superhydrophobic Or Slippery Surfaces, Ahmed A. Hemeda

Theses and Dissertations

The goal of this study is to quantify the transient performance of microfabricated superhydrophobic surfaces when used in underwater applications. A mathematical framework is developed and used to predict the stability, longevity, and drag reduction benefits of submerged superhydrophobic surfaces with two- or three-dimensional micro-textures. In addition, a novel design is proposed to improve the drag-reduction benefits of lubricant-infused surfaces, by placing a layer of trapped air underneath the lubricant layer. The new design is referred to as lubricant–infused surfaces with trapped air, and it is designed to eliminate the long-lasting longevity problem of submerged superhydrophobic surfaces. The effectiveness of …


Magnetic Materials Characterization And Modeling For The Enhanced Design Of Magnetic Shielding Of Cryomodules In Particle Accelerators., Sanjay K. Sah Jan 2016

Magnetic Materials Characterization And Modeling For The Enhanced Design Of Magnetic Shielding Of Cryomodules In Particle Accelerators., Sanjay K. Sah

Theses and Dissertations

Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge can …


Filter Performance Under Simulated Real-World Conditions, Qiang Wang Jan 2016

Filter Performance Under Simulated Real-World Conditions, Qiang Wang

Theses and Dissertations

Evaluating the performance of filter media for filtration applications is essential to assure design engineers and users that filter device will deliver promised performance for specific applications under the environmental stress. The study of particle loading characteristics of filter media in the laboratory setting is typically performed under the steady flow conditions, i.e., at the constant particle concentration and flow rate. In reality, filtration products are operated under the situations that the flow rate and mass concentration of particles are varied in time. The success of translating the laboratory data to estimate the performance of filter media in the fields …


In-Shoe Plantar Pressure System To Investigate Ground Reaction Force Using Android Platform, Ahmed A. Mostfa Jan 2016

In-Shoe Plantar Pressure System To Investigate Ground Reaction Force Using Android Platform, Ahmed A. Mostfa

Theses and Dissertations

Human footwear is not yet designed to optimally relieve pressure on the heel of the foot. Proper foot pressure assessment requires personal training and measurements by specialized machinery. This research aims to investigate and hypothesize about Preferred Transition Speed (PTS) and to classify the gait phase of explicit variances in walking patterns between different subjects. An in-shoe wearable pressure system using Android application was developed to investigate walking patterns and collect data on Activities of Daily Living (ADL). In-shoe circuitry used Flexi-Force A201 sensors placed at three major areas: heel contact, 1st metatarsal, and 5th metatarsal with a PIC16F688 microcontroller …


Efficiency Evaluation Of A Magnetically Driven Multiple Disk Centrifugal Blood Pump, Kayla H. Moody Jan 2016

Efficiency Evaluation Of A Magnetically Driven Multiple Disk Centrifugal Blood Pump, Kayla H. Moody

Theses and Dissertations

Heart failure is expected to ail over 8 million people in America by 2030 leaving many in need of cardiac replacement. To accommodate this large volume of people, ventricular assist devices (VADs) are necessary to provide mechanical circulatory support. Current VADs exhibit issues such as thrombosis and hemolysis caused by large local pressure drops and turbulent flow within the pump. Multiple disk centrifugal pumps (MDCPs) use shearing and centrifugal forces to produce laminar flow patterns and eliminate large pressure drops within the pump which greatly reduce risks that are in current VADs. The MDCP has a shaft drive system (SDS) …


Power Maximization For Pyroelectric, Piezoelectric, And Hybrid Energy Harvesting, Murtadha A. Shaheen Jan 2016

Power Maximization For Pyroelectric, Piezoelectric, And Hybrid Energy Harvesting, Murtadha A. Shaheen

Theses and Dissertations

The goal of this dissertation consists of improving the efficiency of energy harvesting using pyroelectric and piezoelectric materials in a system by the proper characterization of electrical parameters, widening frequency, and coupling of both effects with the appropriate parameters.

A new simple stand-alone method of characterizing the impedance of a pyroelectric cell has been demonstrated. This method utilizes a Pyroelectric single pole low pass filter technique, PSLPF. Utilizing the properties of a PSLPF, where a known input voltage is applied and capacitance Cp and resistance Rp can be calculated at a frequency of 1 mHz to 1 Hz. …