Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Computation Of Hypersonic Flows With Lateral Jets Using K-Ω Turbulence Model, Spatika Dasharati Iyengar Dec 2015

Computation Of Hypersonic Flows With Lateral Jets Using K-Ω Turbulence Model, Spatika Dasharati Iyengar

Doctoral Dissertations and Master's Theses

Thermal Protection systems (TPS) are used as shields in space vehicles which encounter high heat and temperatures at the reentry altitudes. Among them, the cooling techniques and the ablative coatings are most popular. However, they have their own weight limitations. In the recent decade, another classification of TPS called the Non-Ablative Thermal Protection systems (NaTPS) have gained significance. The spike-lateral jet method is an NaTPS concept proposed for drag and heat flux reduction in hypersonic nose cones. Numerical simulations are conducted to analyze the effectiveness of spike-lateral jet concept at re-entry altitudes. The spike attached to the hemispherical nose has …


The Three-Dimensional Turbulent Boundary Layer On A Rotating Disk, Daniel Digre Dec 2015

The Three-Dimensional Turbulent Boundary Layer On A Rotating Disk, Daniel Digre

Doctoral Dissertations and Master's Theses

Three-dimensional turbulent boundary layers (3DTBL) are seen quite commonly in nature as well as in the engineering applications. Despite this, very few high Reynolds number studies have been carried out on these boundary layers, particularly focusing on eddy structure, eddy scales and their interactions. The current study focused on developing, characterizing and evaluating an experimental framework to study high Reynolds number #3DTBL on a rotating disk with the long-term goal of carrying out high-fidelity measurements. The rotating disk flow is characterized by weak centrifugal pumping which sets up the cross flow that leads to turbulence. The tangential and radial velocities …


Multiple Scales Of Beach Morphodynamic Processes: Measurements And Modelling, Jun Cheng Nov 2015

Multiple Scales Of Beach Morphodynamic Processes: Measurements And Modelling, Jun Cheng

USF Tampa Graduate Theses and Dissertations

Multiple scales of beach morphodynamic processes ranging from those of wave-breaking induced turbulence, individual wave, storm, seasonal, to inter-annual are examined in this dissertation based on both laboratory and field data. These processes were simulated using process-based numerical models and data-driven models.

At a microscale, separating turbulence from orbital motion under breaking waves in the surf zone is essential to understanding wave-energy dissipation. Velocity data under monochromatic and random waves in the large-scale sediment transport facility (LSTF) were analyzed. Moving averaging provides a simple method for extracting turbulence from velocity measurements under random breaking waves collected at a reasonably high …


Effect Of Gap Flow On The Shallow Wake Of A Sharp-Edged Bluff Body –Mean Velocity Fields, A.M Shinneeb, R. Balachandar Aug 2015

Effect Of Gap Flow On The Shallow Wake Of A Sharp-Edged Bluff Body –Mean Velocity Fields, A.M Shinneeb, R. Balachandar

Civil and Environmental Engineering Publications

This experimental study was carried out to investigate the turbulent shallow wake generated by a vertical sharp-edged flat plate suspended in a shallow channel flow with a gap near the bed. The objective of this study is to understand the effect of the gap flow on the wake by studying two different gap heights between the channel bed and the bottom edge of the bluff body. These two cases will be compared to the no-gap case which is considered as a reference case. Themaximumflowvelocity was 0.45m/s and the Reynolds number based on the water depthwas 45,000. Extensivemeasurements of the flowfield …


Near-Wall Measurements For A Turbulent Impinging Slot Jet System, Jiang Zhe, Vijay Modi Apr 2015

Near-Wall Measurements For A Turbulent Impinging Slot Jet System, Jiang Zhe, Vijay Modi

Dr. Jiang Zhe

The velocity field in the vicinity of a target surface with a turbulent slot jet impinging normally on it is examined. The impingement region is confined by means of a confinement plate that is flush with the slot and parallel to the impingement plate. The distance H of the impingement wall from the slot is varied from 2 to 9.2 slot widths. Jet Reynolds numbers (based on slot width B) of 10,000–30,000 are considered. Mean velocity and root mean square velocity measurements are carried out using hot-wire anemometry. A boundary layer probe is utilized in order to obtain measurements at …


Construction Of Naca 66-415 Nlf Composite Wing For Acoustic Turbulence Testing, Scott Sawyer, Sean Stewart Apr 2015

Construction Of Naca 66-415 Nlf Composite Wing For Acoustic Turbulence Testing, Scott Sawyer, Sean Stewart

Dr. Scott Sawyer

A design is developed for a Natural Laminar Flow (NLF) wing, to be used at California Polytechnic State University for acoustic turbulence testing. Composite materials are used to produce high-quality surface finishes necessary for laminar flow. A design for the test apparatus is presented and justified. A manufacturing procedure is proposed for the carbon fiber skin, using Vacuum Resin Infusion (VRI). This procedure is tested on a scaled part with satisfactory results; lessons learned are discovered and integrated into the final manufacturing process. The test section has been fit to the Cal Poly wind tunnel, but full implementation has not …


An Examination Of The Potential For Distributed Wind Generation (Dwg) In Urban Distribution Networks, Keith Sunderland, Thomas Woolmington, Michael Conlon, Gerald Mills Mar 2015

An Examination Of The Potential For Distributed Wind Generation (Dwg) In Urban Distribution Networks, Keith Sunderland, Thomas Woolmington, Michael Conlon, Gerald Mills

Conference papers

In a sustainable economy, smarter cities need energy networks that can deliver consistent electricity while maximising the use of intermittent renewables. Therefore an understanding of the available resource and a means for viable integration of distributed generation (DG) is required. In this research, energy harvesting of the wind climate is considered in the context of distributed wind generation (DwG) as an integral component of a smarter electricity network. The approach combines wind climate modeling of the resource at the urban scale with enhanced electricity network simulation. The former considers energy harvesting potential while the latter investigates the opportunities for this …


Ambit Of Multiphase Cfd In Modelling Transport Processes Related To Oil Spill Scenario And Microfluidics, Abhijit Rao Jan 2015

Ambit Of Multiphase Cfd In Modelling Transport Processes Related To Oil Spill Scenario And Microfluidics, Abhijit Rao

LSU Doctoral Dissertations

During the ‘Deepwater Horizon’ accident in the deep sea in 2010, about 4.9 million barrels of oil was released into the Gulf of Mexico, making the spill one of the worst ocean spills in recent times. To mitigate the ill effects of the event on the environment, subsea injection of dispersants was carried out. Dispersant addition lowers the interfacial tension at oil/water interface and presence of local turbulence enhances the droplet disintegration process. The oil droplets contain a plethora of hydrocarbons which are soluble in water. In deep spill scenarios, droplets spend large amounts of time in water column; hence, …


Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain Jan 2015

Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain

Open Access Theses & Dissertations

In order to design next generation gas turbine combustor and rocket engines, a systematic study of flame structure at high intensity turbulent flow is necessary. The fundamental study of turbulent premixed combustion has been a major research concern for decades. The work is focused on the design and development of a high intensity turbulent combustion system which can be operated at compressible (0.3 < M < 0.5), preheated (T0=500K) and premixed conditions in order to investigate the 'Thickened Flame' regime. An air-methane mixture has been used as the fuel for this study. An optically accessible backward-facing step stabilized combustor has been designed for a maximum operating pressure of 6 bar. A grid has been introduced with different blockage ratios (BR = 54%, 61% & 67%) in order to generate turbulence inside the combustor for the experiment. Optical access is provided via quartz windows on three sides of the combustion chamber. Finite Element Analysis (FEA) is done in order to verify the structural integrity of the combustor at rated conditions. In order to increase the inlet temperature of the air, a heating section was designed to use commercially available in-line heaters. Separate cooling subsystems have been designed for chamber cooling and exhaust cooling. The LabVIEW software interface has been selected as the control mechanism for the experimental setup. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser Induced Fluorescence (PLIF) system have been integrated with the system in order to diagnose the flow field and the flame respectively. The primary understanding of the flow field inside the combustor was achieved through the use of Detached Eddy Simulation (DES) by using commercially available software package ANSYS FLUENT. Preliminary validation is done by 10 kHz TR-PIV technique. Both qualitative and quantitative analysis have been done for CFD and experiment. Major flow parameters such as average velocity, fluctuation of velocity, kinetic energy, and turbulent intensity have been calculated for two distinct Reynolds number (Re = 815 & 3500). PIV results are compared with CFD results which show significant agreement with each other.


Experimental Investigation Of Wall Shear Stress Modifications Due To Turbulent Flow Over An Ablative Thermal Protection System Analog Surface, Jacob Helvey Jan 2015

Experimental Investigation Of Wall Shear Stress Modifications Due To Turbulent Flow Over An Ablative Thermal Protection System Analog Surface, Jacob Helvey

Theses and Dissertations--Mechanical Engineering

Modifications were made to the turbulent channel flow facility to allow for fully developed rough quasi-2D Poiseuille flow with flow injection through one surface and flow suction through the opposing surface. The combination of roughness and flow injection is designed to be analogous to the flow field over a thermal protection system which produces ablative pyrolysis gases during ablation. It was found that the additional momentum through the surface acted to reduce skin friction to a point below smooth-wall behavior. This effect was less significant with increasing Reynolds number. It was also found that the momentum injection modified the wake …