Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Engineering

Emergency Diesel-Electric Generator Set Maintenance And Test Periodicity, Stephen John Fehr Oct 2014

Emergency Diesel-Electric Generator Set Maintenance And Test Periodicity, Stephen John Fehr

Engineering Management & Systems Engineering Theses & Dissertations

Manufacturer and industry recommendations vary considerably for maintenance and tests of emergency diesel-electric generator sets supporting critical operations power systems facilities. There is little consistency among sets of similar technology, and manufacturers and their representatives often provide contradictory guidance. As a result, periodicity of emergency diesel-electric generator set maintenance and tests varies considerably in practice. This work proposes and tests a research and analysis framework to develop parametric regression survival models of modern diesel-electric generator sets in emergency standby duty as a function of maintenance periodicity, test periodicity, and other predictors. Within this framework, predictors are developed from common maintenance …


Evaluation Of Degradation In Gan High Electron Mobility Transistors Due To The Inverse Piezoelectric Effect, Deepthi Nagulapally Jul 2014

Evaluation Of Degradation In Gan High Electron Mobility Transistors Due To The Inverse Piezoelectric Effect, Deepthi Nagulapally

Electrical & Computer Engineering Theses & Dissertations

It has recently been postulated that high voltage stress can result in the degradation of nanoscale structures that are made up of piezoelectric materials. The inverse piezoelectric effect (IPE) is believed to be the likely reason for this degradation mechanism. Basically, the IPE leads to the creation of high internal stresses driven by the presence of an electric field. Consequently, devices based on piezoelectric materials are postulated to undergo defect formation induced by the large mechanical stress arising from the inverse piezoelectric effect in the presence of an applied bias. GaN based devices are mostly observed to show this degradation …


Investigation And Optimization Of A New Compact Superconducting Cavity For Deflecting And Crabbing Applications, Subashini Uddika De Silva Jul 2014

Investigation And Optimization Of A New Compact Superconducting Cavity For Deflecting And Crabbing Applications, Subashini Uddika De Silva

Physics Theses & Dissertations

Deflecting and crabbing structures have many applications in current accelerator systems. The primary use of a deflecting cavity is to separate a single beam into multiple beams. A crabbing cavity enables the head-on collision at the interaction point in particle colliders in order to increase the luminosity. The early uses of the deflecting structures have been in the early 1960s: these structures were disk loaded structures operating at room temperature. The crabbing structure which was installed at the NEK electron-positron collider was the first and only operational superconducting cavity of that kind. The most common design of superconducting deflecting and …


Idpal – A Partially-Adiabatic Energy-Efficient Logic Family: Theory And Applications To Secure Computing, Mihail T. Cutitaru Jul 2014

Idpal – A Partially-Adiabatic Energy-Efficient Logic Family: Theory And Applications To Secure Computing, Mihail T. Cutitaru

Electrical & Computer Engineering Theses & Dissertations

Low-power circuits and issues associated with them have gained a significant amount of attention in recent years due to the boom in portable electronic devices. Historically, low-power operation relied heavily on technology scaling and reduced operating voltage, however this trend has been slowing down recently due to the increased power density on chips. This dissertation introduces a new very-low power partially-adiabatic logic family called Input-Decoupled Partially-Adiabatic Logic (IDPAL) with applications in low-power circuits. Experimental results show that IDPAL reduces energy usage by 79% compared to equivalent CMOS implementations and by 25% when compared to the best adiabatic implementation. Experiments ranging …


Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur Jul 2014

Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur

Electrical & Computer Engineering Theses & Dissertations

A Brain-Computer Interface (BCI) is a system that allows people with severe neuromuscular disorders to communicate and control devices using their brain signals. BCIs based on scalp-recorded electroencephalography (s-EEG) have recently been demonstrated to provide a practical, long-term communication channel to severely disabled users. These BCIs use time-domain s-EEG features based on the P300 event-related potential to convey the user's intent. The performance of s-EEG-based BCIs has generally stagnated in recent years, and high day-to-day performance variability exists for some disabled users. Recently intracranial EEG (i-EEG), which is recorded from the cortical surface or the hippocampus, has been successfully used …


Numerical Study Of Poration And Ionic Conduction In Nanopores Caused By High-Intensity, Nanosecond Pulses In Cell, Hao Qiu Jul 2014

Numerical Study Of Poration And Ionic Conduction In Nanopores Caused By High-Intensity, Nanosecond Pulses In Cell, Hao Qiu

Electrical & Computer Engineering Theses & Dissertations

This dissertation focuses on the dynamics and bioeffects of electroporation of biological cell and ionic conduction in nanopores under high-intensity, nanosecond pulses. The electroporation model utilized the current continuity equation and the asymptotic Smoluchowski equation to explore the transmembrane potential and pore density of the plasma and intracellular membranes; the ionic conduction model employed the Poisson-Nernst-Planck equations and the Navier-Stokes equations to analyze the ionic current and ion concentration profile.

Nanosecond electric pulses of high-intensity amplitude can initiate electroporation of intracellular organelles. The pulse parameters and cell electrical properties, that can selectively electroporate liposomes but keep the plasma and nuclear …


Transparent Spectrum Co-Access In Cognitive Radio Networks, Jonathan Daniel Backens Apr 2014

Transparent Spectrum Co-Access In Cognitive Radio Networks, Jonathan Daniel Backens

Electrical & Computer Engineering Theses & Dissertations

The licensed wireless spectrum is currently under-utilized by as much as 85%. Cognitive radio networks have been proposed to employ dynamic spectrum access to share this under-utilized spectrum between licensed primary user transmissions and unlicensed secondary user transmissions. Current secondary user opportunistic spectrum access methods, however, remain limited in their ability to provide enough incentive to convince primary users to share the licensed spectrum, and they rely on primary user absence to guarantee secondary user performance. These challenges are addressed by developing a Dynamic Spectrum Co-Access Architecture (DSCA) that allows secondary user transmissions to co-access transparently and concurrently with primary …


Characterization Of An Impulse Radiating Antenna In The Near Field, Chandra Barjracharya Apr 2014

Characterization Of An Impulse Radiating Antenna In The Near Field, Chandra Barjracharya

Electrical & Computer Engineering Theses & Dissertations

The biological effects of intense sub-nanosecond pulses on tissues or cells are in the dielectric domain and not based on thermal loading as in the conventional microwave radiation, which may lead to an entirely new approach of modifying cell functions. Moreover, the resulting cell functional change may be detected with higher resolution by broadband, sub-nanosecond pulses than conventional narrowband systems. The delivery of intense sub-nanosecond pulses to near-field biological tissues, however, has not been studied, not mentioning the focal depth and volume. In this dissertation, for the first time, an impulse radiating antenna with a balanced feed structure is studied …


Enhancing The Insulation Of Wide-Range Spectrum In The Pva/N Thin Film By Doping Zno Nanowires, Yu-Chen Lin, Ching-Hsiang Vhen, Liang-Yih Chen, Shih-Chieh Hsu, Shizhi Qian Jan 2014

Enhancing The Insulation Of Wide-Range Spectrum In The Pva/N Thin Film By Doping Zno Nanowires, Yu-Chen Lin, Ching-Hsiang Vhen, Liang-Yih Chen, Shih-Chieh Hsu, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In this study, polyvinyl alcohol/nitrogen (PVA/N) hybrid thin films doped with sharp-sword ZnO nanowires with insulating effect and wide-range spectrum are demonstrated for the first time. PVA/N doped ZnO nanocomposites were developed by blending PVA and N-doped ZnO nanowires in water at room temperature. Measurements from the field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman, and photoluminescence emission (PL) spectra of the products show that nitrogen is successfully doped into the ZnO wurtzite crystal lattice. In addition, the refractive index of PVA/N doped ZnO hybrid thin films can be controlled by varying the doped ZnO nanowires under different …


Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov Jan 2014

Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov

Bioelectrics Publications

Opening of long-lived pores in the cell membrane is the principal primary effect of intense, nanosecond pulsed electric field (nsPEF). Here we demonstrate that the evolution of pores, cell survival, the time and the mode of cell death (necrotic or apoptotic) are determined by the level of external Ca2+ after nsPEF. We also introduce a novel, minimally disruptive technique for nsEP exposure of adherent cells on indium tin oxide (ITO)-coated glass coverslips, which does not require cell detachment and enables fast exchanges of bath media. Increasing the Ca2+ level from the nominal 2–5 μM to 2 mM for …


Introduction To Fourth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier Jan 2014

Introduction To Fourth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier

Bioelectrics Publications

This fourth special electroporation-based technologies and treatments issue of the Journal of Membrane Biology contains reports on recent developments in the field of electroporation by participants in the 7th International Workshop and Postgraduate Course on electroporation based technologies and treatments (EBTT 2013) held in Ljubljana, November 17–23, 2013. The 65 participants included faculty members, invited lecturers, special guests, and young scientists, and students from 16 countries. In addition to lectures on the fundamentals, this year’s sessions included talks on microbial inactivation by pulsed electric fields, modeling of intracellular electroporation, electroporation in food processing, and electrotransfer-facilitated DNA vaccination.


Physical Analysis Of Vo2 Films Grown By Atomic Layer Deposition And Rf Magnetron Sputtering, Madhavi Tangirala, Kai Zhang, David Nminibapiel, Venkateswara Pallem, Christian Dussarrat, Wei Cao, Thomas N. Adam, Corbet S. Johnson, Hani E. Elsayed-Ali, Helmut Baumgart Jan 2014

Physical Analysis Of Vo2 Films Grown By Atomic Layer Deposition And Rf Magnetron Sputtering, Madhavi Tangirala, Kai Zhang, David Nminibapiel, Venkateswara Pallem, Christian Dussarrat, Wei Cao, Thomas N. Adam, Corbet S. Johnson, Hani E. Elsayed-Ali, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

Among the many vanadium suboxides and different stoichiometries, VO2 has received considerable attention due to its remarkable metal-insulator transition (MIT) behavior, which causes a significant reversible change in its electrical and optical properties occurring across the phase transition at 67°C. The initially amorphous VO2 thin films were fabricated by the emerging, Atomic Layer Deposition (ALD) technique with (tetrakis[ethylmethylamino]vanadium) {V(NEtMe)4} as precursor and H2O vapor as oxidation agent. For benchmarking we have also used the RF Magnetron Sputtering technique to deposit metallic vanadium thin films, which were later oxidized during furnace annealing. Post annealing of …


Atomic Layer Deposition Of Nanolaminate Structures Of Alternating Pbte And Pbse Thermoelectric Films, K. Zhang, A. D. Ramalingom Pillai, K. Bollenbach, D. Nminibapiel, W. Cao, H. Baumgart Jan 2014

Atomic Layer Deposition Of Nanolaminate Structures Of Alternating Pbte And Pbse Thermoelectric Films, K. Zhang, A. D. Ramalingom Pillai, K. Bollenbach, D. Nminibapiel, W. Cao, H. Baumgart

Electrical & Computer Engineering Faculty Publications

For this study PbTe and PbSe thin film nanolaminates have been prepared on silicon substrates with native oxide by Atomic Layer Deposition (ALD) using lead(II)bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (Pb(C11H19O2)(2), (trimethylsilyl) telluride ((Me3Si)2Te) and bis-(triethyl silyl) selane ((Et3Si)2Se) as ALD precursors for lead, tellurium and selenium. The experimental evidence revealed the ALD growth of lead telluride and lead selenide followed the Vollmer-Weber island growth mode. We found a strong dependence of the nucleation process on the temperature. In this paper, we present the optimized conditions for growing PbTe …


Detection Of Ofdm Signals Using Pilot Tones And Applications To Spectrum Sensing For Cognitive Radio Systems, Ahmed Temtam Jan 2014

Detection Of Ofdm Signals Using Pilot Tones And Applications To Spectrum Sensing For Cognitive Radio Systems, Ahmed Temtam

Electrical & Computer Engineering Theses & Dissertations

Nowadays there are an increasing number of wireless devices which support wireless networking and the need for higher data rate communication is increasing rabidly. As more and more systems go wireless, approaching technologies will face spectral crowding and existence of wireless devices will be an important issue. Because of the limited bandwidth availability, accepting the request for higher capacity and data rates is a challenging task, demanding advanced technologies that can offers new methods of using the available radio spectrum. Cognitive radio introduces a key solution to the spectral increasing issue by presenting the opportunistic usage of spectrum that is …


Direct Classification Of All American English Phonemes Using Signals From Functional Speech Motor Cortex, Emily M. Mugler, James L. Patton, Robert D. Flint, Zachary A. Wright, Stephan U. Schuele, Joshua Rosenow, Jerry J. Shih, Dean J. Krusienski, Marc W. Slutzky Jan 2014

Direct Classification Of All American English Phonemes Using Signals From Functional Speech Motor Cortex, Emily M. Mugler, James L. Patton, Robert D. Flint, Zachary A. Wright, Stephan U. Schuele, Joshua Rosenow, Jerry J. Shih, Dean J. Krusienski, Marc W. Slutzky

Electrical & Computer Engineering Faculty Publications

Although brain-computer interfaces (BCIs) can be used in several different ways to restore communication, communicative BCI has not approached the rate or efficiency of natural human speech. Electrocorticography (ECoG) has precise spatiotemporal resolution that enables recording of brain activity distributed over a wide area of cortex, such as during speech production. In this study, we investigated words that span the entire set of phonemes in the General American accent using ECoG with 4 subjects. We classified phonemes with up to 36% accuracy when classifying all phonemes and up to 63% accuracy for a single phoneme. Further, misclassified phonemes follow articulation …


Numerical Study Of Lipid Translocation Driven By Nanoporation Due To Multiple High-Intensity, Ultrashort Electrical Pulses, Viswanadham Sridhara, Ravindra P. Joshi Jan 2014

Numerical Study Of Lipid Translocation Driven By Nanoporation Due To Multiple High-Intensity, Ultrashort Electrical Pulses, Viswanadham Sridhara, Ravindra P. Joshi

Electrical & Computer Engineering Faculty Publications

The dynamical translocation of lipids from one leaflet to another due to membrane permeabilization driven by nanosecond, high-intensity (>100 kV/cm) electrical pulses has been probed. Our simulations show that lipid molecules can translocate by diffusion through water-filled nanopores which form following high voltage application. Our focus is on multiple pulsing, and such simulations are relevant to gauge the time duration over which nanopores might remain open, and facilitate continued lipid translocations and membrane transport. Our results are indicative of a N1/2 scaling with pulse number for the pore radius. These results bode well for the use of pulse …


Generator Polynomial Formulation For Parallel Counters With Applications, Lee A. Belfore Ii Jan 2014

Generator Polynomial Formulation For Parallel Counters With Applications, Lee A. Belfore Ii

Electrical & Computer Engineering Faculty Publications

Parallel counters have been studied for several decades as a component in high speed multipliers and multi-operand adder circuits. Using a generator polynomial as a formalism for describing parallel counters in the general case, parallel counter properties can be derived and inferred. Furthermore, the structure and decomposition of the generator polynomial can suggest different implementation strategies. These include simple implementations of (7,3) and (15,4) parallel counters. By grouping factors, the design of a fast (7,3) parallel counter is presented. Finally, the generator polynomial is extended to permit factors of different weights. This extension provides a means for describing the design …


Array Of Surface-Confined Glow Discharges In Atmospheric Pressure Helium: Modes And Dynamics, D. Li, D. X. Liu, Q. Y. Nie, H. P. Li, H. L. Chen, M. G. Kong Jan 2014

Array Of Surface-Confined Glow Discharges In Atmospheric Pressure Helium: Modes And Dynamics, D. Li, D. X. Liu, Q. Y. Nie, H. P. Li, H. L. Chen, M. G. Kong

Bioelectrics Publications

Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but …


Identifiability Of Additive Actuator And Sensor Faults By State Augmentation, Suresh M. Joshi, Oscar R. Gonzalez, Jason M. Upchurch Jan 2014

Identifiability Of Additive Actuator And Sensor Faults By State Augmentation, Suresh M. Joshi, Oscar R. Gonzalez, Jason M. Upchurch

Electrical & Computer Engineering Faculty Publications

A class of FDI (fault detection and identification) methods for bias-type actuator and sensor faults was explored from the point of view of fault identifiability. The methods use banks of Kalman-Bucy filters (KBFs) to detect faults, determine the fault pattern, and estimate the fault values. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults was presented. It was shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions were demonstrated via numerical examples. The analytical …


Mathematical Methods Applied To Digital Image Processing, Yi-Hung Liu, Chung Hao Chen, Paul C.P. Chao Jan 2014

Mathematical Methods Applied To Digital Image Processing, Yi-Hung Liu, Chung Hao Chen, Paul C.P. Chao

Electrical & Computer Engineering Faculty Publications

Introduction: Digital image processing (DIP) is an important research area since it spans a variety of applications. Although over the past few decades there has been a rapid rise in this field, there still remain issues to address. Examples include image coding, image restoration, 3D image processing, feature extraction and analysis, moving object detection, and face recognition. To deal with these issues, the use of sophisticated and robust mathematical algorithms plays a crucial role. The aim of this special issue is to provide an opportunity for researchers to publish their latest theoretical and technological achievements in mathematical methods and their …


Sensor Selection And Integration To Improve Video Segmentation In Complex Environments, Adam R. Reckley, Wei-Wen Hsu, Chung-Hao Chen, Gangfeng Ma, E-Wen Huang Jan 2014

Sensor Selection And Integration To Improve Video Segmentation In Complex Environments, Adam R. Reckley, Wei-Wen Hsu, Chung-Hao Chen, Gangfeng Ma, E-Wen Huang

Electrical & Computer Engineering Faculty Publications

Background subtraction is often considered to be a required stage of any video surveillance system being used to detect objects in a single frame and/or track objects across multiple frames in a video sequence. Most current state-of-the-art techniques for object detection and tracking utilize some form of background subtraction that involves developing a model of the background at a pixel, region, or frame level and designating any elements that deviate from the background model as foreground. However, most existing approaches are capable of segmenting a number of distinct components but unable to distinguish between the desired object of interest and …


Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li Jan 2014

Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li

Electrical & Computer Engineering Faculty Publications

Metal-Oxide-Semiconductor (MOS) capacitors with Bi2Te3 thin film sandwiched and embedded inside the oxide layer have been fabricated and studied. The capacitors exhibit ferroelectric-like hysteresis which is a result of the robust, reversible polarization of the Bi2Te3 thin film while the gate voltage sweeps. The temperature-dependent capacitance measurement indicates that the activation energy is about 0.33 eV for separating the electron and hole pairs in the bulk of Bi2Te3, and driving them to either the top or bottom surface of the thin film. Because of the fast polarization speed, potentially excellent …


Optical Characterization Of Nanomaterials, Mun S. Jeong, Gon Namkoong, Clare C. Byeon, Jong Su Kim, Hong S. Lee Jan 2014

Optical Characterization Of Nanomaterials, Mun S. Jeong, Gon Namkoong, Clare C. Byeon, Jong Su Kim, Hong S. Lee

Electrical & Computer Engineering Faculty Publications

No abstract provided.


Stability Of High Band Gap P3ht: Pcbm Organic Solar Cells Using Tiox Interfacial Layer, Kurniawan Foe, Gon Namkoong, Matthew Samson, Enas M. Younes, Ilho Nam, Tarek M. Abdel-Fattah Jan 2014

Stability Of High Band Gap P3ht: Pcbm Organic Solar Cells Using Tiox Interfacial Layer, Kurniawan Foe, Gon Namkoong, Matthew Samson, Enas M. Younes, Ilho Nam, Tarek M. Abdel-Fattah

Electrical & Computer Engineering Faculty Publications

We fabricated a poly [3-hexylthiophene] (P3HT) and [6,6] -phenyl-C61-butyric acid methyl ester (PC61BM with the TiOx layer. We found that a solution based TiOx coated at a spin speed of 3000 rpm improved the photon absorption of the active layer. An optimized TiOx layer was also used as the interfacial layer to investigate the stability of P3HT: PC61BM OPC. After 70 days of storage, we observed that the short-circuit current density (JSC) dropped by 16.2%, fill factor (FF) dropped by 10.6%, and power conversion efficiency (PCE) dropped approximately by 25%, while …


Stm Study Of Pulsed Laser Assisted Growth Of Ge Quantum Dot On Si(1 0 0)-(2 × 1), Ali Orguz Er, Hani E. Elsayed-Ali Jan 2014

Stm Study Of Pulsed Laser Assisted Growth Of Ge Quantum Dot On Si(1 0 0)-(2 × 1), Ali Orguz Er, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Ge quantum dot formation on Si(1 0 0)-(2 × 1) by nanosecond pulsed laser deposition under laser excitation was investigated. Scanning tunneling microscopy was used to probe the growth mode and morphology. Excitation was performed during deposition using laser energy density of 25-100 mJ/cm 2. Faceted islands were achieved at a substrate temperature of ∼250 °C only when using laser excitation. The island morphology changes with increased laser excitation energy density although the faceting of the individual islands remains the same. The size of the major length of islands increases with the excitation laser energy density. A purely electronic …


A Third-Year Review Of Design And Packaging Of Sensor Systems, M. Brian Thomas, Andrea Mitofsky, Vukica Jovanovic, John Eiler Jan 2014

A Third-Year Review Of Design And Packaging Of Sensor Systems, M. Brian Thomas, Andrea Mitofsky, Vukica Jovanovic, John Eiler

Engineering Technology Faculty Publications

Faculty from the Electrical Engineering and Design Engineering Technology Departments at Trine University have developed a joint design module for upper-level courses in their respective disciplines. In this module, student teams collaborate in designing and prototyping the electronics and packaging for a hand-held sensor system. The principal objective of the collaboration is for students to incorporate design factors external to their discipline in a program-focused design project. This effort advances the students' abilities to work effectively in multidisciplinary teams during their senior capstone courses. The design module was introduced in the fall 2011 semester, and was repeated in fall 2012 …


Ionizing Radiation Detection Using Microstructured Optical Fiber, Stanton Dehaven Jan 2014

Ionizing Radiation Detection Using Microstructured Optical Fiber, Stanton Dehaven

Electrical & Computer Engineering Theses & Dissertations

Ionizing radiation detecting microstructured optical fibers are fabricated, modeled and experimentally measured for X-ray detection in the 10-40 keV energy range. These fibers operate by containing a scintillator material which emits visible light when exposed to ionizing radiation. An X-ray source characterized with a CdTe spectrometer is used to quantify the X-ray detection efficiency of the fibers. The solid state CdTe detector is considered 100% efficient in this energy range. A liquid filled microstructured optical fiber (MOF) is presented where numerical analysis and experimental observation leads to a geometric theory of photon transmission using total internal reflection. The model relates …


Temporal Modulation Of Plasma Species In Atmospheric Dielectric Barrier Discharges, Aijun Yang, Xiaohua Wang, Dingxin Liu, Mingzhe Rong, Michael G. Kong Jan 2014

Temporal Modulation Of Plasma Species In Atmospheric Dielectric Barrier Discharges, Aijun Yang, Xiaohua Wang, Dingxin Liu, Mingzhe Rong, Michael G. Kong

Bioelectrics Publications

The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N2 dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N2 …


Detection Of Seagrass Scars Using Sparse Coding And Morphological Filter, Ender Oguslu, Sertan Erkanli, Victoria J. Hill, W. Paul Bissett, Richard C. Zimmerman, Jiang Li, Charles R. Bostater Jr. (Ed.), Stelios P. Mertikas (Ed.), Xavier Neyt (Ed.) Jan 2014

Detection Of Seagrass Scars Using Sparse Coding And Morphological Filter, Ender Oguslu, Sertan Erkanli, Victoria J. Hill, W. Paul Bissett, Richard C. Zimmerman, Jiang Li, Charles R. Bostater Jr. (Ed.), Stelios P. Mertikas (Ed.), Xavier Neyt (Ed.)

OES Faculty Publications

We present a two-step algorithm for the detection of seafloor propeller seagrass scars in shallow water using panchromatic images. The first step is to classify image pixels into scar and non-scar categories based on a sparse coding algorithm. The first step produces an initial scar map in which false positive scar pixels may be present. In the second step, local orientation of each detected scar pixel is computed using the morphological directional profile, which is defined as outputs of a directional filter with a varying orientation parameter. The profile is then utilized to eliminate false positives and generate the final …