Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Series

Australian Institute for Innovative Materials - Papers

Batteries

Articles 1 - 3 of 3

Full-Text Articles in Engineering

K0.25mn2o4 Nanofiber Microclusters As High Power Cathode Materials For Rechargeable Lithium Batteries, Chaofeng Zhang, Chuanqi Feng, Peng Zhang, Zaiping Guo, Zhixin Chen, Sean Li, Hua-Kun Liu Jan 2012

K0.25mn2o4 Nanofiber Microclusters As High Power Cathode Materials For Rechargeable Lithium Batteries, Chaofeng Zhang, Chuanqi Feng, Peng Zhang, Zaiping Guo, Zhixin Chen, Sean Li, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

K0.25Mn2O4 microclusters assembled from single-crystalline nanofibers were synthesized via a hydrothermal process at different temperatures. The possibility of using these materials as cathode material for lithium ion batteries was studied for the first time. The charge/discharge results showed that the K0.25Mn2O4 nanofiber microclusters synthesized at 120 degrees C exhibit excellent lithium storage properties, with a high reversible capability (360 mA h g-1 at current density of 100 mA g-1) and stable lithium-ion insertion/de-insertion reversibility. The charge/discharge mechanism in lithium ion batteries was studied and proposed for the …


Free-Standing Single-Walled Carbon Nanotube/Sno2 Anode Paper For Flexible Lithium-Ion Batteries, Lukman Noerochim, Jia-Zhao Wang, Shulei Chou, David Wexler Jan 2012

Free-Standing Single-Walled Carbon Nanotube/Sno2 Anode Paper For Flexible Lithium-Ion Batteries, Lukman Noerochim, Jia-Zhao Wang, Shulei Chou, David Wexler

Australian Institute for Innovative Materials - Papers

Free-standingsingle-walledcarbonnanotube/SnO2 (SWCNT/SnO2) anodepaper was prepared by vacuum filtration of SWCNT/SnO2 hybrid material which was synthesized by the polyol method. From field emission scanning electron microscopy and transmission electron microscopy, the CNTs form a three-dimensional nanoporous network, in which ultra-fine SnO2 nanoparticles, which had crystallite sizes of less than 5 nm, were distributed, predominately as groups of nanoparticles on the surfaces of singlewalled CNT bundles. Electrochemical measurements demonstrated that the anodepaper with 34 wt.% SnO2 had excellent cyclic retention, with the high specific capacity of 454 mAh g−1 beyond 100 cycles at a current …


Irradiation Si On Carbon Nanotube Paper As A Flexible Anode Material For Lithium-Ion Batteries, Shulei Chou, Mihail Ionescu, Jia-Zhao Wang, Brad Winton, Hua-Kun Liu Jan 2012

Irradiation Si On Carbon Nanotube Paper As A Flexible Anode Material For Lithium-Ion Batteries, Shulei Chou, Mihail Ionescu, Jia-Zhao Wang, Brad Winton, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Silicon single walled carbon nanotube composite paper was modified by low energy ion implantation using 5i to obtain a flexible composite paper. Raman and FE-SEM results show that structure of SWCNT could be destroyed by the implantation. Electrochemical measurements display that the implanted SI can improve the specific capacity and the reversible capacity of CNT paper. After 50 cycles, the specific capacity of 5Hmplanted CNT paper is 30 per cent higher than the pristine CNT.