Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Fabrication Of Multi-Material Structures Using Ultrasonic Consolidation And Laser-Engineered Net Shaping, John Olorunshola Obielodan Dec 2010

Fabrication Of Multi-Material Structures Using Ultrasonic Consolidation And Laser-Engineered Net Shaping, John Olorunshola Obielodan

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This research explores the use of two additive manufacturing processes for the fabrication of multi-material structures. Ultrasonic consolidation (UC) and laser- engineered net shaping (LENS) processes were used for parallel systematic investigations of the process parameters and methodologies for the development of multi-material structures.

The UC process uses ultrasonic energy at low temperature to bond metallic foils. A wide range of metallic materials including nickel; titanium; copper; molybdenum; tantalum; MetPreg®; silver; stainless steel; and aluminum alloys 1100, 3003, and 6061 were bonded in different combinations. Material domains are inherently discrete in ultrasonically consolidated structures. The mechanical properties of some of …


Axisymmetric Finite Element Modeling For The Design And Analysis Of Cylindrical Adhesive Joints Based On Dimensional Stability, Paul E. Lyon Dec 2010

Axisymmetric Finite Element Modeling For The Design And Analysis Of Cylindrical Adhesive Joints Based On Dimensional Stability, Paul E. Lyon

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The use and implementation of adhesive joints for space structures is necessary for incorporating fiber-reinforced composite materials. Correct modeling and design of cylindrical adhesive joints can increase the dimensional stability of space structures. The few analytical models for cylindrical adhesive joints do not fully describe the displacement or stress field of the joint.

A two-dimensional axisymmetric finite element model for the design and analysis of adhesive joints was developed. The model was developed solely for the analysis of cylindrical adhesive joints, but the energy techniques used to develop the model can be applied to other types of joints as well. …


Fabrication Of Fluorescent Nanoparticle-Polymer Composites For Photoactive-Based Materials, Brett Ellerbrock Aug 2010

Fabrication Of Fluorescent Nanoparticle-Polymer Composites For Photoactive-Based Materials, Brett Ellerbrock

All Theses

Nanocomposites of nanoparticles dispersed throughout a polymer matrix have been studied to great length to improve the overall polymer properties. These enhancements are observed in the thermal, physical, and/or optical characteristics. Being able to harness nanoparticles in such a way may help improve fiber technology into the 21st century.
This work was geared toward synthesizing rare earth doped lanthanum fluoride (LaF3) nanoparticles because good separation in the absorption and emission bands of the material and it fluoresces in the visible to near-infrared range. Terbium ions were added to a LaF3 crystal because of their distinct visible green …


Delamination Of Sandwich Composites, Richard Anthony Davis May 2010

Delamination Of Sandwich Composites, Richard Anthony Davis

Aerospace Engineering

The use of shear keys to help stop or inhibit the face-sheet core delamination of sandwich composite beams under monotonic loading was analyzed in Cal Poly’s structural design lab. The composite beams were treated with the same boundary conditions as the ASTM D5528 double cantilever beam bending in which both faces of the beam remain free; one of the faces would have a debonded side and the other would not. An aluminum tab is attached to the top of the specimens and the load is applied there. Each specimen has piezoelectric sensors that are utilized in the detection of delamination …


On The Use Of Polyurethane Matrix Carbon Fiber Composites For Strengthening Concrete Structures, Zachary Haber Jan 2010

On The Use Of Polyurethane Matrix Carbon Fiber Composites For Strengthening Concrete Structures, Zachary Haber

Electronic Theses and Dissertations

Fiber-reinforced polymer (FRP) composite materials have effectively been used in numerous reinforced concrete civil infrastructure strengthening projects. Although a significant body of knowledge has been established for epoxy matrix carbon FRPs and epoxy adhesives, there is still a need to investigate other matrices and adhesive types. One such matrix/adhesive type yet to be heavily researched for infrastructure application is polyurethane. This thesis investigates use of polyurethane matrix carbon fiber composites for strengthening reinforced concrete civil infrastructure. Investigations on mirco- and macro-mechanical composite performance, strengthened member flexural performance, and bond durability under environmental conditioning will be presented. Results indicate that polyurethane …


Performance Of Reinforced Concrete Columns Strengthened With Fiber Reinforced Polymers Under Various Loading Conditions, Mohamed Gamal Mohamed El Sayed Jan 2010

Performance Of Reinforced Concrete Columns Strengthened With Fiber Reinforced Polymers Under Various Loading Conditions, Mohamed Gamal Mohamed El Sayed

Theses

Strengthening of reinforced concrete (RC) structures with Carbon Fiber Reinforced Polymer (CFRP) composites has been a popular subject that attracted considerable attention from researchers for the last two decades. The high specific strength, stiffness, environmental resistance, and ease of application make CFRP composites highly desirable for strengthening and rehabilitation of RC structural components.

For concentrically loaded RC members with a circular cross-section, the lateral CFRP-confinement of concrete results in a substantial increase in load capacity and ductility. CFRP-confinement is less effective for RC compression members with square and rectangular cross-sections due to stress concentration at the corners and lack of …


Modeling And Simulation For Shape Memory Polymer Based Self-Healing Syntactic Foam, Wei Xu Jan 2010

Modeling And Simulation For Shape Memory Polymer Based Self-Healing Syntactic Foam, Wei Xu

LSU Doctoral Dissertations

Syntactic foams, renowned for their low density and high mechanical properties, are enjoying continuing growth in various civilian and military sectors. However, like laminated composites, foam cored structures are vulnerable to impact damages and suffering from inabilities in repairing macro-scale cracks. A self-healing mechanism for structural damage is genuinely desired. A recent development in self-healing structural damage is a two-step close then heal (CTH) scheme proposed by Li and Nettles [1] and elucidated by Li and Uppu [2], by mimicking the self-healing process of human skin. This concept has been further demonstrated in Nji and Li’s work [3] that a …