Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2008

Series

University of Nevada, Las Vegas

Discipline
Keyword
Publication

Articles 1 - 30 of 40

Full-Text Articles in Engineering

College Of Engineering Senior Design Competition Fall 2008, University Of Nevada, Las Vegas Dec 2008

College Of Engineering Senior Design Competition Fall 2008, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge.

The senior design competition helps to focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects …


Site Response Zones And Short-Period Earthquake Ground Motion Projections For The Las Vegas Basin, Barbara Luke, Ying Liu Nov 2008

Site Response Zones And Short-Period Earthquake Ground Motion Projections For The Las Vegas Basin, Barbara Luke, Ying Liu

Civil and Environmental Engineering and Construction Faculty Research

A deterministic seismic hazard analysis was conducted to address the effect of local soil conditions on earthquake-induced strong ground motion in the Las Vegas Basin, Nevada (US). Using a large geological and geotechnical database, two response units were defined: a fine-grained unit, predominantly clay; and a coarse-grained unit, predominantly gravel. A moderate number of high-quality shallow shear wave velocity measurements were collected from which characteristic shear wave velocity profiles were developed for each response unit. An equivalent-linear one-dimensional site response model was used. The model was calibrated using a basin-wide, small-strain ground motion database. Calibration tests showed that ground motion …


Characterizing Anomalous Ground For Engineering Applications Using Surface-Based Seismic Methods, Barbara Luke, Wanda Taylor, Carlos Calderon-Macias, Xiaohui Jin, Helena Murvosh, Jeff Wagoner Nov 2008

Characterizing Anomalous Ground For Engineering Applications Using Surface-Based Seismic Methods, Barbara Luke, Wanda Taylor, Carlos Calderon-Macias, Xiaohui Jin, Helena Murvosh, Jeff Wagoner

Civil and Environmental Engineering and Construction Faculty Research

Shallow seismics are in demand today in tectonically active regions to characterize and classify sites for earthquake response studies. The surface-based seismic methods are the most widely used for this purpose. In developed areas, the passive-source methods, also known as microtremor methods, are popular because of their efficiency and because the available frequency content is appropriate to determine an average shear-wave velocity for the upper 30 m. This information is required by the International Building Code, which is used by many municipalities in the US and elsewhere.


High Temperature Heat Exchanger Annual Report, Anthony Hechanova Sep 2008

High Temperature Heat Exchanger Annual Report, Anthony Hechanova

Publications (NSTD)

Objectives

• Identify candidate materials for heat exchanger components.

• Test candidate materials for heat exchanger components.

• Design critical components in the interface between the reactor and hydrogen production plant and within the sulfur iodine thermochemical process.

• Fabricate prototypical components.

• Test prototypical components.


Clarifying The Use Of Formative Measurement In The Is Discipline: The Case Of Computer Self-Efficacy, Andrew M. Hardin, Jerry Cha-Jan Chang, Mark A. Fuller Sep 2008

Clarifying The Use Of Formative Measurement In The Is Discipline: The Case Of Computer Self-Efficacy, Andrew M. Hardin, Jerry Cha-Jan Chang, Mark A. Fuller

Management, Entrepreneurship and Technology Faculty Publications

The article offers insights on the use of formative measurement in the information system (IS) discipline. It focuses on the comment which warns researchers on the pitfalls of misapplying formative measures in information system domain as well as on the issues related to computer self-efficacy (CSE) and formative measurement. It then asserts that formative indicator weights are sued in determining the conceptual meaning of constructs and notes that the conceptual definition of CSE will likely differ as they are used in different research models and contexts.


Environmental Effects On Corrosion Properties Of Alloy 22, Mano Misra Sep 2008

Environmental Effects On Corrosion Properties Of Alloy 22, Mano Misra

Publications (YM)

This document presents detailed technical report for four Subtasks that were conducted independently. All four Subtasks investigated environmental effects on corrosion properties of Alloy 22. The four Subtasks that were investigated are as follows: Subtask 1: Experimental Determination of Parameters for the General Corrosion Model. Subtask 2: Corrosion under Dust Deposits Containing Hygroscopic Salts. Subtask 3: Heated Electrode Approach for the Study of Corrosion Under Aggressive Conditions. Subtask 4: Effect of Hydrogen Permeation on the Stability of the Passive Film of Alloy 22.


Preliminary Study On Optimization Of Data Distribution In Resource Sharing Systems, Grzegorz Chmaj, Krzysztof Walkowiak Aug 2008

Preliminary Study On Optimization Of Data Distribution In Resource Sharing Systems, Grzegorz Chmaj, Krzysztof Walkowiak

Electrical & Computer Engineering Faculty Research

Grid structures are increasingly considered as very convergent with peer-to-peer networks. This paper presents a model of network acting both as grid and peer-to-peer network, used for data computation and distribution. Presented PPLC algorithm is a complete solution for both grid and peer-to-peer points of view. Problem formulation is presented, as well as solution heuristic algorithm and research results.


The Role Of Silicon Content On Environmental Degradations Of T91 Steels, Ajit K. Roy, D. Maitra, Pankaj Kumar Aug 2008

The Role Of Silicon Content On Environmental Degradations Of T91 Steels, Ajit K. Roy, D. Maitra, Pankaj Kumar

Mechanical Engineering Faculty Research

T91 grade steels showed a gradual enhancement in tensile ductility at ambient temperature due to an increase in Si content from 0.5 to 2.0 weight percent (wt.%). However, the ultimate tensile strength was reduced only above 1.5 wt.% Si. The corrosion potential became more active in an acidic solution with increasing temperature. The cracking susceptibility in a similar environment under a slow-strain-rate (SSR) condition was enhanced at higher temperatures showing reduced ductility, time to failure, and true failure stress. Cathodic potentials applied to the test specimens in SSR testing caused an enhanced cracking tendency at 30 and 60°C, suggesting hydrogen …


Tensile Deformation Of A Nickel-Base Alloy At Elevated Temperatures, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam Aug 2008

Tensile Deformation Of A Nickel-Base Alloy At Elevated Temperatures, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam

Mechanical Engineering Faculty Research

The results of tensile testing involving Waspaloy indicate that the failure strain was gradually reduced at temperatures ranging between ambient and 300 °C. Further, serrations were observed in the engineering stress versus strain diagrams in the temperature range of 300-600 °C. The reduced failure strain and the formation of serrations in these temperature regimes could be the result of dynamic strain aging of this alloy. The extent of work hardening due to plastic deformation was reduced at temperatures above 300 °C. A combination of ductile and intergranular brittle failures was seen at temperatures above 600 °C. γ′ was detected at …


A Finite Queue Model Analysis Of Pmrc-Based Wireless Sensor Networks, Qiaoqin Li, Mei Yang, Hongyan Wang, Yingtao Jiang, Jiazhi Zeng Jul 2008

A Finite Queue Model Analysis Of Pmrc-Based Wireless Sensor Networks, Qiaoqin Li, Mei Yang, Hongyan Wang, Yingtao Jiang, Jiazhi Zeng

Electrical & Computer Engineering Faculty Research

In our previous work, a highly scalable and fault- tolerant network architecture, the Progressive Multi-hop Rotational Clustered (PMRC) structure, is proposed for constructing large-scale wireless sensor networks. Further, the overlapped scheme is proposed to solve the bottleneck problem in PMRC-based sensor networks. As buffer space is often scarce in sensor nodes, in this paper, we focus on studying the queuing performance of cluster heads in PMRC-based sensor networks. We develop a finite queuing model to analyze the queuing performance of cluster heads for both non-overlapped and overlapped PMRC-based sensor network. The average queue length and average queue delay of cluster …


Significance Of Logic Synthesis In Fpga-Based Design Of Image And Signal Processing Systems, Mariusz Rawski, Henry Selvaraj, Bogdan J. Falkowski, Tadeusz Luba Jun 2008

Significance Of Logic Synthesis In Fpga-Based Design Of Image And Signal Processing Systems, Mariusz Rawski, Henry Selvaraj, Bogdan J. Falkowski, Tadeusz Luba

Electrical & Computer Engineering Faculty Research

This chapter, taking FIR filters as an example, presents the discussion on efficiency of different implementation methodologies of DSP algorithms targeting modern FPGA architectures. Nowadays, programmable technology provides the possibility to implement digital systems with the use of specialized embedded DSP blocks. However, this technology gives the designer the possibility to increase efficiency of designed systems by exploitation of parallelisms of implemented algorithms. Moreover, it is possible to apply special techniques, such as distributed arithmetic (DA). Since in this approach, general-purpose multipliers are replaced by combinational LUT blocks, it is possible to construct digital filters of very high performance. Additionally, …


College Of Engineering Senior Design Competition Spring 2008, University Of Nevada, Las Vegas May 2008

College Of Engineering Senior Design Competition Spring 2008, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge.

The senior design competition helps to focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects …


Final Report: Nevada System Of Higher Education Quality Assurance Program, Nevada System Of Higher Education Mar 2008

Final Report: Nevada System Of Higher Education Quality Assurance Program, Nevada System Of Higher Education

Publications (YM)

The principal purpose of the cooperative agreement was to develop and continue providing the public and the Office of Repository Development (ORD) of the U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) with an independently derived, unbiased body of scientific and engineering data concerning the study of Yucca Mountain as a potential high-level radioactive waste repository. Under this agreement, the Nevada System of Higher Education (NSHE), formerly the University and Community CollegeSystem of Nevada (UCCSN), performed scientific and engineering research, and maintained and fostered collaborative working relationships between government and academic researchers. In performing these activities, …


An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das Mar 2008

An Ultrahigh Vacuum Complementary Metal Oxide Silicon Compatible Nonlithographic System To Fabricate Nanoparticle-Based Devices, Arghya Banerjee, Biswajit Das

Electrical & Computer Engineering Faculty Research

Nanoparticles of metals and semiconductors are promising for the implementation of a variety of photonic and electronic devices with superior performances and new functionalities. However, their successful implementation has been limited due to the lack of appropriate fabrication processes that are suitable for volume manufacturing. The current techniques for the fabrication of nanoparticles either are solution based, thus requiring complex surface passivation, or have severe constraints over the choice of particle size and material. We have developed an ultrahigh vacuum system for the implementation of a complex nanosystem that is flexible and compatible with the silicon integrated circuit process, thus …


Evaluation Of Cs/Sr Waste Form For Long Term Storage And Disposal, Gary Cerefice Jan 2008

Evaluation Of Cs/Sr Waste Form For Long Term Storage And Disposal, Gary Cerefice

Waste Forms Campaign (TRP)

The goal of this project is to examine the potential long term performance of the proposed aluminosilicate waste/storage form for the isolation and eventual direct disposal of the cesium and strontium separated from recycled nuclear fuel. In the first phase of this work, researchers will investigate the sintering procedure to prepare the drum-like aluminosilicate waste/storage form from the as-received aluminosilicate powder, and then examine the basic physical properties, phase structure and microstructure of the sintered aluminosilicate with /without mixing solution with several ppm Cs/Sr. In the second phase, researchers will evaluate the interaction of the proposed waste form with structural …


Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh Jan 2008

Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh

Reactor Campaign (TRP)

In the development of advanced fast reactors, materials and coolant/material interactions pose a critical barrier for higher temperature and longer core life designs. For advanced burner reactors (sodium cooled) such as EBR-II and FFTF, experience has shown that the qualified structural materials and fuel cladding severely limits the economic performance. In other liquid metal cooled reactor concepts, advanced materials and better understanding and control of coolant and materials interactions are necessary for realizing the potentials.

Liquid sodium has been selected as the primary coolant candidate for Gen. IV nuclear energy systems. Global Nuclear Partnership (GNEP) Advanced Burned Reactor (ABR) has …


Sub-Surface Corrosion Research On Rock Bolt System, Perforated Ss Sheets And Steel Sets For The Yucca Mountain Repository — Quarterly Technical Report No. 14, Dhanesh Chandra, Jaak J.K. Daemen Jan 2008

Sub-Surface Corrosion Research On Rock Bolt System, Perforated Ss Sheets And Steel Sets For The Yucca Mountain Repository — Quarterly Technical Report No. 14, Dhanesh Chandra, Jaak J.K. Daemen

Publications (YM)

This report shows the work done for this period in accordance to cooperative agreement of University of Nevada system for the Task 019 “Subsurface Corrosion Research on Rock Bolt System, Perforated SS Sheets and Steel Sets for the Yucca Mountain Repository”, the overall objective of which is to conduct corrosion research and predict the durability of rock-bolts and other underground metallic roof supports. We are performing oxidation tests using Thermogravimetric Analyzer (TGA), and Potentiodynamic and immersion tests to determine the corrosion rates of rock bolts.

In this quarter specifically we have accomplished the following:

Potentiodynamic tests were performed to determine …


Separation Of Technetium From Uranium And Waste Form Synthesis, Kenneth Czerwinski Jan 2008

Separation Of Technetium From Uranium And Waste Form Synthesis, Kenneth Czerwinski

Waste Forms Campaign (TRP)

In this project, systematic investigations on the Tc-Zr binary metal system will be evaluated for the first time. The synthesis of metallic Tc as well as its alloys with Zr will be evaluated. In order to provide valuable data to AFC R&D, the thermodynamic equilibrium phases, as well as their performance under repository conditions, will be examined.

The research objectives of this project are as follows:

• Evaluate anion exchange methods for achieving the separation of Tc from U.

• Synthesize metallic Tc from the separated product.

• Synthesize and characterize Tc alloys.

• Investigate Tc-corrosion and Tc-leaching of binary …


Evaluation Of Cs/Sr Waste Form For Long Term Storage And Disposal, Gary Cerefice, Longzhou Ma Jan 2008

Evaluation Of Cs/Sr Waste Form For Long Term Storage And Disposal, Gary Cerefice, Longzhou Ma

Waste Forms Campaign (TRP)

To facilitate long-term storage, the disposal containers will need to be able to survive for the entire storage interval. The first aspect of the project will explore the potential interaction of the aluminosilicate waste form with the storage canister materials to determine if there is any corrosion or chemical interaction concerns for the storage of the materials. At the end of the storage interval, most of the cesium (137Cs) in the waste form will have decayed to its daughter, barium (137Ba). While this decay provides a significant reduction in the decay heat generated by the waste …


Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility Design, Yitung Chen, Sean Hsieh Jan 2008

Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility Design, Yitung Chen, Sean Hsieh

Separations Campaign (TRP)

The major objectives will lead to the creation of a framework that combines all the strengths of AMUSE’s complicated calculations, well-established commercial system process package, and ISOPro’s flexible parameter optimization modules. Development of the process simulation code can be done using the solvent extraction process at Argonne National Laboratory in collaboration with the research team from the Mechanical Engineering Department at UNLV.

Research accomplishments:

• Completed final version of the ISOPro User Manual associated with summarized ISOPro source codes.

• Redesigned and completed use case and design class diagrams (DCD) of the ISOPro package using ArgoUML.

• Improved ISOPro system …


Reactor Physics Studies For The Afci Reactor-Accelerator Coupling Experiments Project, Denis Beller Jan 2008

Reactor Physics Studies For The Afci Reactor-Accelerator Coupling Experiments Project, Denis Beller

Transmutation Sciences Physics (TRP)

The specific research objective of this three-year project was to design and conduct accelerator driven experiments, to help demonstrate the ability to design, compute, and conduct ADS experiments and to predict and measure source importance, coupling efficiency, sub-critical reactor kinetics and source-driven transients. In addition, databases were created for both steady state and transient ADS experiments for the nuclear community to develop and test new computational codes and methods. The importance of a driving neutron source in various regions of different subcritical assemblies was mapped. Experiments were conducted and compared to calculations with radiation transport and thermal hydraulics codes such …


Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson Jan 2008

Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson

Transmutation Sciences Materials (TRP)

Advanced nuclear processes and facilities (e.g., transmutation of nuclear waste, fast reactors, and spallation neutron sources) impose special demands on materials, which must withstand high temperatures, high radiation fields, and chemical corrosion. Proposed schemes for transmuting nuclear waste require a nonmoderating coolant such as lead-bismuth eutectic (LBE) or liquid sodium. While LBE corrodes most steels, small amounts of oxygen in the LBE greatly reduces the corrosion rate, and could ideally re-grow a damaged oxide layer in situ. The protective oxide layer would thus be self-healing. However, a fundamental understanding of the role of oxygen and passivating oxide layers is presently …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2008

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The beneficial effects of Si on both the metallurgical and corrosion properties of Cr-Mo steels have previously been demonstrated at UNLV. Therefore, additions of Si ranging from 0.5-2.0 weight percent (wt%) was attempted in this investigation to explore Si effect on both the high temperature tensile properties and corrosion behavior of T91 grade steel. Corrosion studies in the presence of molten LBE could not be performed due to a lack of proper experimental facilities at UNLV. Therefore, detailed corrosion studies involving Si-containing T91 grade steels were performed in an aggressive aqueous solution of acidic pH. Further, significant efforts have been …


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Taide Tan, Jinsuo Zhang, Jichun Li Jan 2008

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Taide Tan, Jinsuo Zhang, Jichun Li

Transmutation Sciences Materials (TRP)

In advanced nuclear energy systems, lead alloys emerge as strong candidates for transmutation and advanced reactor systems as nuclear coolants and spallation neutron targets. However, it is widely recognized that corrosion of materials caused by lead alloys presents a critical barrier to their industrial use. A few experimental research and development projects have been set up by different groups such as at Los Alamos National Laboratory to study the corrosion phenomena in their test facilities and to develop mitigation techniques and materials. One of the central or main techniques under development is to use active control of oxygen thermodynamic activity …


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2008

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to …


Combined Radiation Detection Methods For Assay Of Higher Actinides In Separation Processes, Denis Beller, Charlotta Sanders, Warnick Kernan Jan 2008

Combined Radiation Detection Methods For Assay Of Higher Actinides In Separation Processes, Denis Beller, Charlotta Sanders, Warnick Kernan

Safeguards Campaign (TRP)

In the MPAC project, faculty and students are investigating the potential to use combined neutron and gamma-ray detector systems to measure quantities and isotopic constituents contained during separations and intermediate storage. This will require knowledge of the nuclear and decay characteristics of materials during processing, the development of conceptual designs of monitoring systems, radiation transport studies to develop an understanding of operational regimes, and experiments to confirm performance. In addition, both passive and active concepts will be investigated, including collaborations with the Idaho Accelerator Center at Idaho State University (ISU) to use electron linear accelerators for producing photoneutrons in situ, …


Thermal Transient Flow Rate Sensor For High Temperature Liquid Metal Cooled Nuclear Reactor, Yingtao Jiang, Jian Ma Jan 2008

Thermal Transient Flow Rate Sensor For High Temperature Liquid Metal Cooled Nuclear Reactor, Yingtao Jiang, Jian Ma

Reactor Campaign (TRP)

In nuclear power plants and accelerator driven systems (ADS) for nuclear waste treatment, it is important to monitor the coolant flow rate in the reactor core and pipe-line. In such a strong irradiation, high pressure, and temperature environment, the existing flow measurement techniques (such as Electromagnetic flow meters, Ultrasonic flow meters, Turbine flow meters, etc.) are not accurate and reliable.

The measurement of flow rates (mass flow rates or volume flow rate) plays a notable role in monitoring and controlling the experimental conditions. The bulk flow rates can be obtained through direct methods, which measure the amount of discharged fluids …


Modeling And Design Algorithms For Electromagnetic Pumps, Daniel P. Cook, Yitung Chen, Jian Ma Jan 2008

Modeling And Design Algorithms For Electromagnetic Pumps, Daniel P. Cook, Yitung Chen, Jian Ma

Reactor Campaign (TRP)

Electromagnetic (EM) induction pumps are used extensively in current and proposed nuclear power systems and industrial molten metal transfer operations. Although the Magnetohydrodynamic (MHD) theory that underlies the operation of these types of pumps has been studied extensively in the past few decades, the design of specific EM pumping systems for specific flow cases requires computational tools and expertise, which is lacking in the U.S. However, for the past two years, researchers at UNLV have been utilizing the TC-1 liquid metal loop system at UNLV and an Annular Linear Induction Pump (ALIP) to drive the liquid metal and to develop …


Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh Jan 2008

Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh

Reactor Campaign (TRP)

In the development of advanced fast reactors, materials and coolant/ material interactions pose a critical barrier for higher temperature and longer core life designs. For sodium-cooled fast reactors (SFRs) such as the Experimental Breeder Reactors in Idaho and the Fast Flux Test Facility in Hanford, experience has shown that qualified structural materials and fuel cladding severely limits their economic performance.

Liquid sodium has been selected as the primary coolant candidate for the Advanced Burner Reactor (ABR) of the Global Nuclear Partnership (GNEP). Materials improvement has been identified as a major thrust to improve fast reactor economics. Researchers from universities, national …


Implementation Of Uncertainty Propagation In Triton/Keno, Charlotta Sanders, Denis Beller Jan 2008

Implementation Of Uncertainty Propagation In Triton/Keno, Charlotta Sanders, Denis Beller

Reactor Campaign (TRP)

Monte Carlo methods are beginning to be used for three dimensional fuel depletion analyses to compute various quantities of interest, including isotopic compositions of used nuclear fuel. The TRITON control module, available in the SCALE 5.1 code system, can perform three-dimensional (3-D) depletion calculations using either the KENO V.a or KENO-VI Monte Carlo transport codes, as well as the two-dimensional (2-D) NEWT discrete ordinates code. To overcome problems such as spatially nonuniform neutron flux and non-uniform statistical uncertainties in computed reaction rates and to improve the fidelity of calculations using Monte Carlo methods, uncertainty propagation is needed for depletion calculations.