Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Experiments In Cooperative Timing For Miniature Air Vehicles, Derek R. Nelson, Timothy W. Mclain, Randal W. Beard Aug 2007

Experiments In Cooperative Timing For Miniature Air Vehicles, Derek R. Nelson, Timothy W. Mclain, Randal W. Beard

Faculty Publications

This paper presents experimental results for two cooperative timing missions carried out using a team of three miniature air vehicles (MAVs). Using a cooperative timing algorithm based on coordination functions and coordination variables, the MAV team executed a series of simultaneous arrival and cooperative fly-by missions. In the presence of significant wind disturbances, the average time difference between the first and last vehicle in the simultaneous arrival experiments was 1.6 s. For the cooperative fly-by experiments, the average timing error between vehicle arrivals was 0.6 s. These results demonstrate the practical feasibility of the cooperative timing approach.


Experiments In Cooperative Timing For Miniature Air Vehicles, Timothy Mclain, Derek R. Nelson, Randal W. Beard Aug 2007

Experiments In Cooperative Timing For Miniature Air Vehicles, Timothy Mclain, Derek R. Nelson, Randal W. Beard

Faculty Publications

This paper presents experimental results for two cooperative timing missions carried out using a team of three miniature air vehicles (MAVs). Using a cooperative timing algorithm based on coordination functions and coordination variables, the MAV team executed a series of simultaneous arrival and cooperative fly-by missions. In the presence of significant wind disturbances, the average time difference between the first and last vehicle in the simultaneous arrival experiments was 1.6 s. For the cooperative fly-by experiments, the average timing error between vehicle arrivals was 0.6 s. These results demonstrate the practical feasibility of the cooperative timing approach.


Decentralized Control Of Multiple Uavs For Perimeter And Target Surveillance, Derek B. Kingston Jul 2007

Decentralized Control Of Multiple Uavs For Perimeter And Target Surveillance, Derek B. Kingston

Theses and Dissertations

With the recent development of reliable autonomous technologies for small unmanned air vehicles (UAVs), the algorithms utilizing teams of these vehicles are becoming an increasingly important research area. Unfortunately, there is no unified framework into which all (or even most) cooperative control problems fall. Five factors that affect the development of cooperative control algorithms are objective coupling, communication, completeness, robustness, and efficiency. We classify cooperative control algorithms by these factors and then present three algorithms with application to target and perimeter surveillance and a method for decentralized algorithm design. The primary contributions of this research are the development and analysis …


Information Consensus And Its Application In Multi-Vehicle Cooperative Control, Ella Atkins, Randal Beard, Wei Ren Jul 2007

Information Consensus And Its Application In Multi-Vehicle Cooperative Control, Ella Atkins, Randal Beard, Wei Ren

Faculty Publications

In the last two decades, advances in networking and distributed computing have facilitated a paradigm shift from large, monolithic mainframe computers to networks of less expensive, less powerful workstations. One motivation for multi-vehicle systems is to achieve the same gains for mechanically controlled systems as has been gained in distributed computation. Rather than having a single monolithic (and therefore expensive and complicated) machine do everything, the hope is that many inexpensive, simple machines, can achieve the same, or enhanced functionality, through coordination. In essence, the objective is to replace expensive complicated hardware with software and multiple copies of simple hardware. …


Three Enabling Technologies For Vision-Based, Forest-Fire Perimeter Surveillance Using Multiple Unmanned Aerial Systems, Ryan S. Holt Jun 2007

Three Enabling Technologies For Vision-Based, Forest-Fire Perimeter Surveillance Using Multiple Unmanned Aerial Systems, Ryan S. Holt

Theses and Dissertations

The ability to gather and process information regarding the condition of forest fires is essential to cost-effective, safe, and efficient fire fighting. Advances in sensory and autopilot technology have made miniature unmanned aerial systems (UASs) an important tool in the acquisition of information. This thesis addresses some of the challenges faced when employing UASs for forest-fire perimeter surveillance; namely, perimeter tracking, cooperative perimeter surveillance, and path planning. Solutions to the first two issues are presented and a method for understanding path planning within the context of a forest-fire environment is demonstrated. Both simulation and hardware results are provided for each …