Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Recycling Of Cured Carbon Fiber/Epoxy Resin Laminated Composites Scraps: Processing And Characterization, Khaled Mohammed Al Harmoodi Dec 2022

Recycling Of Cured Carbon Fiber/Epoxy Resin Laminated Composites Scraps: Processing And Characterization, Khaled Mohammed Al Harmoodi

Theses

The concept of reinforced composites came decades ago from the need to fabricate high-strength, heat-resistant, wear-resistant, and low-density materials. The polymer matrix composites offer a wide range of applications due to the collaborative nature of the functional fillers and polymers present. Towards the twenty-first century, the aviation industry flourished due to flying being the preferred way of travel across states and countries. With such a massive demand for air transport, there is an equally parallel demand for the production of aircraft components. This study aims to reuse the waste of uncured composite prepreg scraps from the ply-cutting manufacturing process in …


Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari Dec 2021

Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari

Electronic Theses and Dissertations

Extrusion-based 3D printing of thermoplastic polymer composites manufactures parts that have nonhomogenous, orthotropic, and process-dependent macro-scale material properties. As a part of the dissertation, research works were carried out to: • improve the interlayer mechanical properties and reduce the orthotropy, • use experimentally homogenized orthotropic material properties to numerically model the mechanical behavior of the non-homogenous orthotropic 3D printed parts, • create an efficient numerical thermal model to predict the process-dependent thermal history of the 3D printed part, and • aid the manufacturing process by selecting a suitable set of processing parameters based on a simplified sequentially coupled thermomechanical model. …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf May 2020

Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf

Master's Theses

Fillers are used ubiquitously throughout the fields of polymer and material science to overcome many inherent limitations to polymeric materials (i.e. poor stiffness or strength) and to expand their potential applications. There is a need to develop controllable particle architectures to better understand fundamental structure-property relationships in particle reinforced polymer composites. Charge-transfer complexes (CTCs) can assemble in situ into various needle and dendritic shapes via simple fabrication processes and at low loading levels. In this study, the effect of tetrathiafulvalene (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) CTC crystallites of various shapes and sizes on composite mechanical properties was investigated in an LDPE …


Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil Jan 2020

Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil

Electronic Theses and Dissertations

Due to its unique physical properties, graphene has shown great promise as an additive to Polymer Matrix Composites (PMCs) for material property enhancement. Achieving homogeneous dispersion of the graphene platelets within a polymeric network is critical to realizing these enhancements. Research has shown that achieving homogeneous dispersion of graphene platelets within PMCs is challenging as graphene is immiscible with most polymeric networks. This work used Molecular Dynamics (MD) simulations to demonstrate dispersion of graphene platelets within PMCs is inhibited by molecular surface charge potentials. Further simulations were conducted to demonstrate functionalized forms of graphene, specifically graphene oxide, have altered surface …


Chemically Modified Cellulosic Materials As Multi-Functional Agents In Polymer Composites, Jinlong Zhang Sep 2018

Chemically Modified Cellulosic Materials As Multi-Functional Agents In Polymer Composites, Jinlong Zhang

LSU Doctoral Dissertations

Comparative flame retardancy of micro wood fiber plastic composites (WPCs) with fire retardants (1,2-bis(pentabromophenyl) ethane, metal hydroxides and nanoclay) was studied. The fire additives (1,2-bis(pentabromophenyl) ethane as well as magnesium hydroxide) obviously enhanced the fire retarding properties of WPCs. Especially, 1,2-bis(pentabromophenyl) ethane significantly reduced the total heat release as well as heat release rate. In addition, a synergistic effect of 1,2-bis(pentabromophenyl) and nanoclay was achieved for the enhanced fire retarding performance of WPCs.

A copolymer of cellulose nanocrystals (CNCs) and poly(N-vinylcaprolactam) (PVCL) (PVCL-g-CNCs) for use as thermally-responsive polymers with low critical solution temperatures (LCSTs) was synthesized via atom transfer radical …


Microinjection Molding Of Carbon Filled Polymer Composites, Shengtai Zhou Aug 2018

Microinjection Molding Of Carbon Filled Polymer Composites, Shengtai Zhou

Electronic Thesis and Dissertation Repository

There has been increasing demand for microparts in the areas of electronics, automotive, biomedical and micro-electro-mechanical systems. Microinjection molding (μIM) is becoming an important technology to fabricate miniature products or components to satisfy the ever-increasing needs of the above industries. Polymers and polymeric composites are ubiquitously adopted as molding materials due to their weight advantage, good processability and excellent resistance to corrosion.

Earlier studies have been primarily focused on the μIM of unfilled thermoplastics; however, microparts with multi-functionalities, such as electrical, thermal and mechanical properties are always accommodated by using multi-functional filler loaded polymer composites. Recently, μIM of carbon nanotubes …


Healing-On-Demand Polymer Composites Based On Shape Memory Polyurethane Fibers And Polymeric Artificial Muscles, Pengfei Zhang Jan 2015

Healing-On-Demand Polymer Composites Based On Shape Memory Polyurethane Fibers And Polymeric Artificial Muscles, Pengfei Zhang

LSU Doctoral Dissertations

In this dissertation, the healing-on-demand polymer composites based on shape memory polyurethane fibers and artificial muscles are investigated, for understanding and developing a novel healing-on-demand composite so that it would be used for industrial applications that could heal structural-length scale damage and leaking autonomously, repeatedly, efficiently, timely, and molecularly. Firstly, the structural relaxation behavior of shape memory polyurethane (SMPU) fiber was studied by theoretical analysis and experimental test. Then, a self-healing composite based on cold-drawn short SMPU fiber was prepared and tested for evaluating its crack-healing performance. After that, polymer artificial muscle based healing-on-demand composite was developed and characterized. Based …


Polymer Modification With Multifunctional Additives And Unique Processing Methods, Polina R. Ware Nov 2014

Polymer Modification With Multifunctional Additives And Unique Processing Methods, Polina R. Ware

Doctoral Dissertations

This dissertation describes the investigation of unconventional methods to enhance polymer properties either by using unique processing methods, such as solid-state deformation, or by using multifunctional additives that can simultaneously provide a number of property enhancements. The three main research areas of this dissertation are self-reinforced glassy thermosets, melt-processeable organic/inorganic thermoplastic elastomers and semi-crystalline thermoplastics with improved ductility due to a unique solid-state process treatment. Various thermosets, including epoxies, are used in systems with fibers or other additives to improve stiffness. However such systems are difficult to process due to increased viscosity. This work investigates a new method to reinforce …


Degradation Of High Voltage Glass Fiber-Reinforced Polymer Matrix Composites By Aggressive Environmental Conditions, Tianyi Lu Jan 2014

Degradation Of High Voltage Glass Fiber-Reinforced Polymer Matrix Composites By Aggressive Environmental Conditions, Tianyi Lu

Electronic Theses and Dissertations

Polymer matrix composites reinforced with either E glass or ECR glass fibers-reinforced are used in a variety of high voltage electrical applications because of their advantages like lower weight and cost. However, they can be damaged by aggressive in-service conditions such as high temperature, ultraviolet radiation, moisture, ozone and corrosive environments. Different degradation mechanisms can develop in high voltage PMCs under those extreme environments, which, in turn, can affect the long term structural durability of the composites. A set of PMCs reinforced with ECR-glass and E-glass fibers embedded in four different resins has been investigated in this study. In addition, …


In Situ Reinforced Polymers Using Low Molecular Weight Compounds, Onur Sinan Yordem Sep 2011

In Situ Reinforced Polymers Using Low Molecular Weight Compounds, Onur Sinan Yordem

Open Access Dissertations

The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was …


Characterization Of Aligned Carbon Nanotube/Polymer Composites, Sumanth Banda Jan 2004

Characterization Of Aligned Carbon Nanotube/Polymer Composites, Sumanth Banda

Theses and Dissertations

The main objective of this thesis is to efficiently disperse and align SWNTs in two different polymer matrices to obtain an orthotropic composite whose strength, stiffness and electrical properties depend on the orientation of the SWNTs. The SWNTs are successfully dispersed and aligned in a polyimide matrix and a polymer blend of UDMA/HDDMA. In-situ polymerization under sonication is used to disperse the SWNTs in polyimide matrix and sonication is used to disperse SWNTs in the UDMA/HDDMA matrix. In both cases, an electric field is used to align the SWNTs in the polymer matrices. In the polyimide, the SWNTs are aligned …