Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Lithography

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 42

Full-Text Articles in Engineering

Secondary Electron Interactions In Exposures Of Euv Photoresists, Steven Grzeskowiak Jan 2019

Secondary Electron Interactions In Exposures Of Euv Photoresists, Steven Grzeskowiak

Legacy Theses & Dissertations (2009 - 2024)

The microelectronic industry’s movement toward smaller feature sizes has necessitated a shift to extreme ultraviolet (EUV) lithography to enable cost-effective patterning of sub 20-nm features. However, this shift from 193-nm lithography (6.4 eV) to EUV (13.5 nm, 92 eV) poses significant obstacles, such that photolithography is now operating in an energy range above the electron binding energies of common atomic species in photoresists. This significant energy increase means the chemical reactions happening within operate in the realm of radiation chemistry instead of photochemistry since the observed reactions are due almost entirely to the action of photoelectrons as they dissipate their …


Thin-Film Block Copolymers (Bcps) Self-Assembly As Versatile Patterning Scheme For Functional Nanomaterials, Le Zhang Oct 2018

Thin-Film Block Copolymers (Bcps) Self-Assembly As Versatile Patterning Scheme For Functional Nanomaterials, Le Zhang

LSU Master's Theses

Nanopattern generation is required for building various structural entities in every production process that involves nanostructures. Advancing nanopatterning technologies play an important role in developing and broadening the current nanopatterning technologies to meet up with the ever-demanding requirements in the realm of smaller feature sizes, smoother line-edge roughness (LER) and facile pattern transfer in pursuit of faster computer processors, better electrocatalysts and more compact and intelligent sensors, etc. Conventionally, patterning needs are heavily relied on photolithography, a technique that dominate chip-making industry for more than 50 years. However conventional photolithography is bounded by inherent resolution limits and difficult to be …


Microfluidic Electrical Impedance Spectroscopy, John J. Foley Sep 2018

Microfluidic Electrical Impedance Spectroscopy, John J. Foley

Master's Theses

The goal of this study is to design and manufacture a microfluidic device capable of measuring changes in impedance valuesof microfluidic cell cultures. Tocharacterize this, an interdigitated array of electrodes was patterned over glass, where it was then bonded to a series of fluidic networks created in PDMS via soft lithography. The device measured ethanol impedance initially to show that values remain consistent over time. Impedance values of water and 1% wt. saltwater were compared to show that the device is able to detect changes in impedance, with up to a 60% reduction in electrical impedance in saltwater. Cells were …


Membrane Deflection-Based Fabrication And Design Automation For Integrated Acoustofluidics, Daniel Freitas Jun 2018

Membrane Deflection-Based Fabrication And Design Automation For Integrated Acoustofluidics, Daniel Freitas

Electrical and Computer Engineering Master's Theses

Continuous-flow microfluidic large-scale integration (mLSI) is a developing field first introduced in the early 2000s, that continues to offer promising solutions to many biochemical, biophysical and biomedical problems. In his seminal paper, Thorsen et al. 2002 demonstrated the fabrication of high-density microfluidic systems capable of complex fluidic routing in combinatory arrays of multiplexors, mixers, and storage assemblies integrated with micromechanical valves. mLSI has been a powerful tool for scientific research by allowing for dramatic reduction in the volume of reagent needed for experimentation and offering highly parallelizable and dynamic process flows. These systems have since been the focus of strong …


Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey Dec 2017

Block Copolymer Nanostructures For Inorganic Oxide Nanopatterning, Krishna Pandey

MSU Graduate Theses

Self-assembled nature of block copolymer (BCP) makes them ideal for emerging technologies in nanometer scale. The micro phase separation between two or more dissimilar polymer blocks of BCP leads to uniform periodic nanostructures of different domains of dimension in the range of 5-100 nm, good for the development of emerging microelectronic and optoelectronics devices. Molecular weight and chain architecture of each blocks govern the morphology evolution; gives different structure like spherical, micelles, lamellae, cylindrical, gyroid etc. The morphology evolution of BCP nanostructure also depends on different external factors as well. In the first work of this thesis, three external factors …


Novel Uses Of Directly Patternable Silicon Oxide Based Resist For Advanced Patterning Applications, Vishal Umeshbhai Desai Jan 2017

Novel Uses Of Directly Patternable Silicon Oxide Based Resist For Advanced Patterning Applications, Vishal Umeshbhai Desai

Legacy Theses & Dissertations (2009 - 2024)

Novel applications for the directly-patternable resist material, hydrogen silsesquioxane (HSQ), were studied for multiple advanced lithography techniques. Initially, electron beam lithography (EBL) patterned low-resolution HSQ patterns were demonstrated as a mandrel in a self-aligned double patterning (SADP) approach. Using the novel EBL-SADP approach, the number of total process steps was reduced, as compared to conventional SADP methods. This work provided proof-of-concept for using HSQ resist as a directly-patternable mandrel and plasma enhanced chemical vapor deposited (PECVD) low-stress silicon nitride (LSSiN) as a spacer. Furthermore, rapid thermal annealing (RTA) was demonstrated as a method to increase the spacer etch resistance in …


Improvements To Micro-Contact Performance And Reliability, Tod V. Laurvick Dec 2016

Improvements To Micro-Contact Performance And Reliability, Tod V. Laurvick

Theses and Dissertations

Microelectromechanical Systems (MEMS) based devices, and specifically microswitches, continue to offer many advantages over competing technologies. To realize the benefits of micro-switches, improvements must be made to address performance and reliability shortfalls which have long been an issue with this application. To improve the performance of these devices, the micro-contacts used in this technology must be understood to allow for design improvements, and offer a means for testing to validate this technology and determine when such improvements are ready for operational environments. To build devices which are more robust and capable of continued operation after billions of cycles requires that …


Nanosphere Lithography And Its Application In Rapid And Economic Fabrication Of Plasmonic Hydrogenated Amorphous Silicon Photovoltaic Devices, Chenlong Zhang Jan 2016

Nanosphere Lithography And Its Application In Rapid And Economic Fabrication Of Plasmonic Hydrogenated Amorphous Silicon Photovoltaic Devices, Chenlong Zhang

Dissertations, Master's Theses and Master's Reports

Solar photovoltaic (PV) devices harvest energy from solar radiation and convert it to electricity. PV technologies, as an alternative to traditional fossil fuels, use clean and renewable energy while minimizing pollution. For decades researchers have been developing thin film solar cells as an important alternatives to the relatively expensive bulk crystal solar cell technology. Among those, hydrogenated amorphous silicon (a-Si:H) solar cells prevails for good efficiency, non-toxic and materially abundant nature. However, a-Si:H thickness must be minimized to prevent light induced degradation, so optical enhancement is necessary. Light manipulation has to be applied and carefully engineered to trap light within …


Investigation Of The Optical And Sensing Characteristics Of Nanoparticle Arrays For High Temperature Applications, Gnanaprakash Dharmalingam Jan 2016

Investigation Of The Optical And Sensing Characteristics Of Nanoparticle Arrays For High Temperature Applications, Gnanaprakash Dharmalingam

Legacy Theses & Dissertations (2009 - 2024)

The monitoring of polluting gases such as CO and NOx emitted from gas turbines in power plants and aircraft is important in order to both reduce the effects of such gases on the environment as well as to optimize the performance of the respective power system. The need for emissions monitoring systems is further realized from increased regulatory requirements that are being instituted as a result of the environmental impact from increased air travel. Specifically, it is estimated that the contributions from aircraft emissions to total NOx emissions will increase from 4% to 17% between 2008 and 2020. Extensive fuel …


Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph Nov 2014

Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph

Doctoral Dissertations

The ability to define and control the topography of a surface has been studied extensively due to its importance in a wide variety of applications. The control of a non-planar topography would be very valuable since a number of structures that are pervasive in artificial applications (e.g. fibers, lenses) are curved interfaces. This potential of enabling applications that incorporate non-planar geometries was the motivation for this thesis. The first study of this thesis comprises the study of patterning the circumference of micrometer sized fibers. Specifically, a unique technique was described to pattern the fiber with a periodic array of colloids. …


Self-Assembly Of Block Copolymers By Solvent Vapor Annealing, Mechanism And Lithographic Applications, Xiaodan Gu Apr 2014

Self-Assembly Of Block Copolymers By Solvent Vapor Annealing, Mechanism And Lithographic Applications, Xiaodan Gu

Doctoral Dissertations

Block copolymers (BCP) are a unique class of polymers, which can self-assemble into ordered microdomains with sizes from 3 nm to about 50 nm making BCPs an appealing meso-scale material. In thin films, arrays of BCP microdomains with longrange lateral order can serve as ideal templates or scaffolds for patterning nano-scale functional materials and synthesizing nanostructured materials with size scales that exceed the reach of photolithography. Among many annealing methods, solvent vapor annealing (SVA) is a low-cost, highly efficient way to annihilate defects in BCP thin films and facilitates the formation of highly ordered microdomains within minutes. Directing the self-assembly …


2d & 3d Nanomaterial Fabrication With Biological Molecular Frameworks, Kristina Ivana Fabijanic Feb 2014

2d & 3d Nanomaterial Fabrication With Biological Molecular Frameworks, Kristina Ivana Fabijanic

Dissertations, Theses, and Capstone Projects

Recently, there has been a heightened amount of work done in the field of biomineralization. By taking inspiration from natures' phenomenonal individualities as a means to develop new and interesting nanostructures of varying sizes and dimensions, there is a newly developed design, namely Biomimetic Crystallization Nanolithography (BCN). With this method, the simultaneous nano-patterning and crystallization has been achieved using urease as the nucleation point and the hydrolysis of urea to obtain patterns of oxide semiconductor material, namely zinc oxide, at room temperature and aqueous solvent. The new and interesting characteristic of BCN involves the construction of amorphous inks of ZnO …


Characterization Of Extreme Ultraviolet Lithography Photoresists Using Advanced Metrology And Fitting Techniques, Genevieve Kane Jan 2014

Characterization Of Extreme Ultraviolet Lithography Photoresists Using Advanced Metrology And Fitting Techniques, Genevieve Kane

Legacy Theses & Dissertations (2009 - 2024)

As extreme ultraviolet lithography (EUVL) prepares to be incorporated into high volume manufacturing, many challenges must be addressed. Among these challenges, a need for photoresist improvement exists. The work described here will look into some of the problems and challenges facing EUV resists, in particular out-of-band (OOB) wavelengths of light and their interaction with photoresists. Studies have been completed on the effect of out-of-band light on photoresists [1]-[3]. It is imperative that solutions to suppress the deep ultraviolet (DUV) OOB light be incorporated into next generation EUV production tools due to concerns of decreased performance of lithography, and an increase …


Fabrication And Characterization Of Si(1-X)Ge(X) Semiconductor Alloy For Sensor Applications, Daniel Aaron Schaeffer May 2013

Fabrication And Characterization Of Si(1-X)Ge(X) Semiconductor Alloy For Sensor Applications, Daniel Aaron Schaeffer

Masters Theses

Si1-xGex [Si(1-x)Ge(x)] semiconductor alloys have emerged as materials with many important applications in the electronic industry due to its tunable electronic, optical, and physical properties. It has been studied and analyzed for the fabrication of high-speed micro electronics (e.g., SiGe heterojunction bipolar transistors (HBT) and high electron mobility field effect transistors) and thermo-photovoltaics (e.g., photodetectors, solar cells, thermoelectric power generators and temperature sensors). Other applications of Si1-xGex include tunable neutron and x-ray monochromators and γ- ray [gamma-ray] detectors. In these applications, the Si1-xGex alloy is generally used in the form of …


Microfabrication Processes And Advancements In Planar Electrode Ion Traps As Mass Spectrometers, Brett Jacob Hansen Mar 2013

Microfabrication Processes And Advancements In Planar Electrode Ion Traps As Mass Spectrometers, Brett Jacob Hansen

Theses and Dissertations

This dissertation presents advances in the development of planar electrode ion traps. An ion trap is a device that can be used in mass analysis applications. Electrode surfaces create an electric field profile that trap ionized molecules of an analyte. The electric fields can then be manipulated to mass-selectively eject ions out of the trap into a detector. The resulting data can be used to analyze molecular structure and composition of an unknown compound. Conventional ion traps require machined electrode surfaces to form the electric trapping field. This class of electrode presents significant obstacles when attempting to miniaturize ion traps …


Novel Resist Systems For Euv Lithography : Ler, Chain-Scission, Nanoparticle And More, Brian Cardineau Jan 2013

Novel Resist Systems For Euv Lithography : Ler, Chain-Scission, Nanoparticle And More, Brian Cardineau

Legacy Theses & Dissertations (2009 - 2024)

Extreme Ultraviolet (EUV) lithography is currently the best option for replacing 193-nm lithography in future IC fabrication. For EUV to be successful, however, there are a number of challenges that must be overcome. Current resist designs struggle to meet the demands of future lithography nodes. We propose the best way to overcome these obstacles is through the design of novel resist systems.


Surface Plasmonic Lens Driven Photoelectron Source For Multi-Beam Applications, Heon Joon Choi Jan 2013

Surface Plasmonic Lens Driven Photoelectron Source For Multi-Beam Applications, Heon Joon Choi

Legacy Theses & Dissertations (2009 - 2024)

Surface plasmon polariton (SPP) assisted photoelectron source array is proposed for use in distributed multiple electron beam lithography applications. Individual source is composed of a metal/dielectric surface structure with concentric circular grooves of subwavelength width surrounding a sub-wavelength aperture. Such optical power concentrators, called "plasmonic lenses", collect light incident over a broad area by converting it to surface electromagnetic waves, specifically SPP's, through diffraction by the sub-wavelength grooves surrounding the aperture. Through constructive interference of the generated SPPs between neighboring grooves, controlled by the periodicity of the grooves, high optical power densities can be achieved at the center of the …


The Effect Of Energy Deposition On Pattern Resolution In Electron Beam Lithography, Ananthan Raghunathan Jan 2013

The Effect Of Energy Deposition On Pattern Resolution In Electron Beam Lithography, Ananthan Raghunathan

Legacy Theses & Dissertations (2009 - 2024)

Electron beam lithography is one of the most important tools for nanofabrication. Electron beam lithography has consistently been able to offer higher resolution, typically better than 10 nm or so, compared to other techniques. In this work the contribution of electron-substrate interaction to pattern resolution is investigated.


Local Area Mask Patterning Of Extreme Ultraviolet Lithography Reticles For Native Defect Analysis, Adam Lyons Jan 2013

Local Area Mask Patterning Of Extreme Ultraviolet Lithography Reticles For Native Defect Analysis, Adam Lyons

Legacy Theses & Dissertations (2009 - 2024)

Understanding the nature and behavior of native defects on EUV reticles, particularly their printability, is of critical importance to the successful implementation of EUV lithography for high volume manufacturing, as will be demonstrated in the upcoming chapters. Previous defect characterization work has focused on the examination of programmed defects, native defects on blank reticles, and unaligned native defects on patterned reticles. Each of these approaches has drawbacks, which will be discussed in detail, and the aim of this research is to address these deficiencies by developing a method to pattern features of interest over native defects, enabling the direct observation …


A Novel Fabrication Technique For Three-Dimensional Nanostructures, Ravi Kiran Bonam Jan 2012

A Novel Fabrication Technique For Three-Dimensional Nanostructures, Ravi Kiran Bonam

Legacy Theses & Dissertations (2009 - 2024)

Three dimensional micro- and nano-structures are commonly used in the field of Photonics, Optoelectronics, Sensors and Biological applications. Although numerous physical models are developed, a major challenge has been in their fabrication which is commonly limited to conventional layer-by-layer techniques. In this dissertation, a novel method for fabricating three dimensional structures using Electron Beam Lithography (EBL) will be presented.


Evaluation Of Chemical Mechanical Planarization (Cmp) For The Removal Of Surface Defects In Extreme Ultraviolet Lithography (Euvl) Mask Substrates, Bradley Halligan Wood Jan 2012

Evaluation Of Chemical Mechanical Planarization (Cmp) For The Removal Of Surface Defects In Extreme Ultraviolet Lithography (Euvl) Mask Substrates, Bradley Halligan Wood

Legacy Theses & Dissertations (2009 - 2024)

A modified CMP process was investigated and developed with the goal of removing surface defects (nanoscale depressions or `pits') from quartz mask blank substrates. Initially, quartz glass wafers were evaluated to observe surface roughness and defect introduction due to low down-force CMP processing. Following analysis of quartz glass wafers subjected to such processing it was determined that a CMP-based processing for pit removal of maskblank substrates was potentially viable. Consequently, a specially-designed mask carrier for investigating and developing CMP-based defect removal from EUV maskblank substrates was mounted on a Strasbaugh 6DS-SP CMP laboratory tool. A series of experiments was performed …


Chemical Risk In Early Design, Carlton Ashley Washburn Jan 2012

Chemical Risk In Early Design, Carlton Ashley Washburn

Masters Theses

The purpose of this thesis is to present a methodology to identify risks in the chemical product development process, including fortification of the failure mode taxonomy by including chemical failures. This work will enable comprehensive risk analysis in technology-based products that have a chemical based subsystem, such as those used in the lithography process in the semiconductor industry. This research broadened the failure mode taxonomy by identifying chemical failures from publications in the semiconductor industry. These failures were analyzed to determine the rudimentary failure modes in each case. The newly identified failure modes were added to the failure mode taxonomy. …


Phase Behavior Of Block Copolymers In Compressed Co2 And As Single Domain-Layer, Nanolithographic Etch Resists For Sub-10 Nm Pattern Transfer, Curran Matthew Chandler Sep 2011

Phase Behavior Of Block Copolymers In Compressed Co2 And As Single Domain-Layer, Nanolithographic Etch Resists For Sub-10 Nm Pattern Transfer, Curran Matthew Chandler

Open Access Dissertations

Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts - the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including …


Design, Fabrication, And Testing Of High-Transparency Deep Ultra-Violet Contacts Using Surface Plasmon Coupling In Subwavelength Aluminum Meshes, Clarisse Mazuir Jan 2011

Design, Fabrication, And Testing Of High-Transparency Deep Ultra-Violet Contacts Using Surface Plasmon Coupling In Subwavelength Aluminum Meshes, Clarisse Mazuir

Electronic Theses and Dissertations

The present work aims at enhancing the external quantum efficiencies of ultra-violet (UV) sensitive photodetectors (PDs) and light emitting diodes (LEDs)for any light polarization. Deep UV solid state devices are made out of AlGaN or MgZnO and their performances suffer from the high resistivity of their p-doped regions. They require transparent p-contacts; yet the most commonly used transparent contacts have low transmission in the UV: indium tin oxide (ITO) and nickel-gold (Ni/Au 5/5 nms) transmit less than 50% and 30% respectively at 300 nm. Here we investigate the use of surface plasmons (SPs) to design transparent p-contacts for AlGaN devices …


Fluorinated Acid Amplifiers For Extreme Ultraviolet Lithography, Seth Aaron Kruger Jan 2011

Fluorinated Acid Amplifiers For Extreme Ultraviolet Lithography, Seth Aaron Kruger

Legacy Theses & Dissertations (2009 - 2024)

Extreme ultraviolet lithography (EUV) is a promising candidate for next generation lithography. Although EUV has great potential there are still many challenges that must be solved before the technology can be implemented in the high volume manufacturing of semiconductor devices. The lithographic performance of EUV photoresists is one aspect that requires improvement. Particularly, EUV resists need simultaneous improvements in three properties: resolution, line-edge-roughness and sensitivity. The incorporation of acid amplifiers (AAs) in resists is one method to improve all three properties.


Cost-Effective Imprint Template Fabrication For Step And Flash Imprint Lithography, Adam Marc Munder Jan 2011

Cost-Effective Imprint Template Fabrication For Step And Flash Imprint Lithography, Adam Marc Munder

Legacy Theses & Dissertations (2009 - 2024)

The College of Nanoscale Science and Engineering (CNSE) is studying imprint template fabrication with the 100kV Vistec VB300 Gaussian E-Beam writer. The major goal is to develop and advance imprint template fabrication technology using low cost quartz wafers for proof-of-concept demonstrations.


Effects Of Radiation-Induced Carbon Contamination On The Printing Performance Of Extreme Ultraviolet Masks, Yu-Jen Fan Jan 2011

Effects Of Radiation-Induced Carbon Contamination On The Printing Performance Of Extreme Ultraviolet Masks, Yu-Jen Fan

Legacy Theses & Dissertations (2009 - 2024)

This dissertation investigates one of the remaining issues for extreme ultraviolet (EUV) lithography, the effects of radiation induced carbon contamination on the printing performance of patterned EUV masks. The impact of carbon contamination on EUV masks is significant due to the throughput loss and potential effects on imaging performance, and occurs when multilayer surfaces are exposed to EUV radiation with residual carbonaceous species present. Current carbon contamination research is primarily focused on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on …


The Characterization And Analysis Of In-Vitro And Elevated Temperature Repassivation Of Ti-6al-4v Via Afm Techniques, Aaron J. Guerrero Jun 2010

The Characterization And Analysis Of In-Vitro And Elevated Temperature Repassivation Of Ti-6al-4v Via Afm Techniques, Aaron J. Guerrero

Master's Theses

ABSTRACT

The Characterization and Analysis of In-vitro and Elevated Temperature Repassivation of

Ti-6Al-4V via AFM Techniques

Aaron J Guerrero

Research in the corrosion of orthopaedic implants is a growing research field where implants have been known to show adverse effects in patients who have encountered the unfortunate dissolution of their implants due to corrosion. Once corrosion begins within the body, many adverse biological reactions can occur such as late on-set infections resulting in severe health complications. The focus of this research is specifically related to the problem of late on-set infections caused by localized corrosion of orthopaedic implants. In medical …


Laser Plasma Radiation Studies For Droplet Sources In The Extreme Ultraviolet, Reuvani Kamtaprasad Jan 2010

Laser Plasma Radiation Studies For Droplet Sources In The Extreme Ultraviolet, Reuvani Kamtaprasad

Electronic Theses and Dissertations

The advancement of laboratory based Extreme Ultraviolet (EUV) radiation has escalated with the desire to use EUV as a source for semiconductor device printing. Laser plasmas based on a mass-limited target concept, developed within the Laser Plasma Laboratory demonstrate a much needed versatility for satisfying rigorous source requirements. This concept produces minimal debris concerns and allows for the attainment of high repetition rates as well as the accommodation of various laser and target configurations. This work demonstrates the generation of EUV radiation by creating laser plasmas from mass-limited targets with indium, tin, and antimony doped droplets. Spectral emission from the …


A Study Of Reticle Non-Flatness Induced Image Placement Error In Extreme Ultraviolet Lithography, Sudharshanan Raghunathan Jan 2010

A Study Of Reticle Non-Flatness Induced Image Placement Error In Extreme Ultraviolet Lithography, Sudharshanan Raghunathan

Legacy Theses & Dissertations (2009 - 2024)

As the semiconductor industry continues scaling devices to smaller sizes, the need for next generation lithography technology for fabricating these small structures has always been at the forefront. Over the past few years, conventional optical lithography technology which has adopted a series of resolution enhancement techniques to support the scaling needs is expected to run out of steam in the near future. Extreme Ultra Violet lithography (EUVL) is being actively pursued by the semiconductor industry as one of the most promising next generation lithographic technologies. Most of the issues unique to EUVL arise from the use of 13.5 nm light …