Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Gait

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 46

Full-Text Articles in Engineering

Analysis Of Gait Parameters And Knee Angles In Ultimate Frisbee Players: Implications For Balance And Injury, Ethan Nikcevich Oct 2023

Analysis Of Gait Parameters And Knee Angles In Ultimate Frisbee Players: Implications For Balance And Injury, Ethan Nikcevich

Master's Theses

Biomechanics research investigating gait and balance of ultimate frisbee players is an unexplored topic. Ultimate requires a wide range of motions that could improve balance and is also a sport prone to frequent injury. This study explores the impact of playing ultimate on gait parameters associated with balance and knee angles associated with joint injury. Gait trials were conducted on 8 ultimate players and 8 control participants between the ages of 18 and 23 to obtain total double support time, stance phase time, single support time, load response time, abduction-adduction (AA) angles, internal-external (IE) rotation angles, and flexion angles of …


Enhancing Human Key Point Identification: A Comparative Study Of High-Resolution Vicon Dataset And Coco Dataset Using Bpnet, Bibash Lama Aug 2023

Enhancing Human Key Point Identification: A Comparative Study Of High-Resolution Vicon Dataset And Coco Dataset Using Bpnet, Bibash Lama

Masters Theses

Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study presents a high-resolution dataset created using the VICON motion capture system and three differently oriented 2D cameras, that can be used to train different neural networks for estimating the 2D key joint positions of the person from the 2D images or videos. The participants in the study included 25 healthy adults (17 males and 8 females) performing normal gait movements for about 2 to 3 seconds. The VICON system captured 3D ground truth data, while the three 2D cameras collected …


Subject-Specific Human Knee Fea Models For Transtibial Amputees Vs Control Tibial Cartilage Pressure In Gait, Cycling And Elliptical Training, Ali Yazdkhasti Aug 2023

Subject-Specific Human Knee Fea Models For Transtibial Amputees Vs Control Tibial Cartilage Pressure In Gait, Cycling And Elliptical Training, Ali Yazdkhasti

Master's Theses

Millions of individuals around the globe are impacted by osteoarthritis, which is the prevailing type of arthritis. This condition arises as a result of gradual deterioration of the protective cartilage that safeguards the ends of the bones. This is especially true of transtibial amputees, who have a significantly higher incidence of osteoarthritis of the knee in their intact limb than non-amputees. Engaging in regular physical activity, managing weight effectively, and undergoing specific treatments can potentially slow down the advancement of the disease and enhance pain relief and joint function. Nevertheless, the relationship between the type of exercise and its impact …


Investigating The Effectiveness Of A Haptic Feedback System To Improve The Gait Speed Of Older Adults In Overground Walking, Md Tanzid Hossain May 2023

Investigating The Effectiveness Of A Haptic Feedback System To Improve The Gait Speed Of Older Adults In Overground Walking, Md Tanzid Hossain

Electronic Theses and Dissertations

While the use of tactile feedback for modifying gait has recently shown promising results in a number of research studies, there has been little attention given to its ability to effect change in the gait of older adults nor has the effect of the frequency of this feedback been examined. Given the important associations of walking speed with the health of older adults, the goal of this study was to determine if a recently developed haptic feedback system could increase the walking speed of older adults and whether the frequency at which this feedback was provided would have an impact …


Validation Of Meta Motion Imu Sensors Through Measurement Of Knee Angles During Gait, Kerri Caruso May 2023

Validation Of Meta Motion Imu Sensors Through Measurement Of Knee Angles During Gait, Kerri Caruso

Biomedical Engineering Theses & Dissertations

The implementation of inertial measurement units (IMU) in the biomechanical field has become increasingly popular due to their robustness, simplicity, accuracy, and the ability to move research out of a lab and into the real world. In this study, the MetaMotion IMU sensors are assessed for validity against a dynamometer and the Vicon motion capture system. Both systems have proven their measuring accuracies in the biomechanics world and are used as the truth source for this validation study. In the first part of this study, the sensors are assessed for various common sensor errors. Individual sensor components of the IMU, …


A Biomechanical Approach To Prevent Falls In Ergonomic Settings, Sachini Kodithuwakku Arachchige Aug 2022

A Biomechanical Approach To Prevent Falls In Ergonomic Settings, Sachini Kodithuwakku Arachchige

Theses and Dissertations

Introduction: Fall-related injuries are exceptionally prevalent in occupational settings. While endangering the workers’ health, falls cause poor productivity and increased economic burden in the workplace. Hence, identifying these threats and training workers to achieve proper postural control is crucial. Purpose: Study 1: To investigate the ankle joint kinematics in unexpected and expected trip responses during single-tasking (ST), dual-tasking (DT), and triple-tasking (TT), before and after a physically fatiguing exercise. Study 2: To investigate the impact of virtual heights, DT, and training on static postural stability and cognitive processing. Methods: Study 1: Twenty collegiate volunteers (10 males and females, one left …


Effect Of Dorsal Quadrant Or Ventral Quadrant Spinal Cord Injury On Gait Features During Locomotion., Anya Nicole Trell Aug 2022

Effect Of Dorsal Quadrant Or Ventral Quadrant Spinal Cord Injury On Gait Features During Locomotion., Anya Nicole Trell

Electronic Theses and Dissertations

In the Unites States, approximately 1.5 million people currently have a spinal cord injury and suffer permanent sensory and motor loss due to the disruption of the spinal cord. Due to the significant morbidity, it is vital to understand the functional impact of disrupting neural descending pathways that modulate spinal neurons involved in intermuscular coordination critical for gait behaviors. Tasks that are more difficult require additional input from these neural pathways; therefore, fourteen feline subjects were familiarized with level overground locomotion and stair descent gait tasks. After collection of baseline kinematic data, the subjects received either a dorsal or ventral …


Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons May 2022

Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons

Theses and Dissertations

Fatigue testing of stretch sensors often focuses on high amplitude, low-cycle fatigue (LCF) behavior; however, when used for orthopaedic, athletic, or ergonomic assessments, stretch sensors are subjected to low amplitude, high-cycle fatigue (HCF) conditions. As an added layer of complexity, the fatigue testing of stretch sensors is not only focused on the life of the material comprising the sensor, but also on the reliability of the signal produced during the extension and relaxation of the sensor. Research into the development of a smart sock that can be used to measure the range of motion (ROM) of the ankle joint during …


Full-Body Biomechanical Characterization Of Children With Hypermobile Ehlers-Danlos Syndrome During Gait And Activities Of Daily Living, Anahita Alahmoradiqashqai May 2022

Full-Body Biomechanical Characterization Of Children With Hypermobile Ehlers-Danlos Syndrome During Gait And Activities Of Daily Living, Anahita Alahmoradiqashqai

Theses and Dissertations

Hypermobile Ehlers-Danlos syndrome (hEDS) is an inherited connective tissue disorder, often under-diagnosed, and presenting with frequent chronic pain and severe musculoskeletal symptoms that can drastically reduce the quality of life during one’s life span. While there are limited quantitative approaches in the literature on adult movements, the biomechanics of movements during activities of daily living (ADLs) in children have not been investigated comprehensively. Therefore, the primary purpose of this dissertation was to characterize the biomechanics of the musculoskeletal system and investigate the biomechanics of hEDS by quantifying joint dynamics and muscle activations during ADLs and gait in the pediatric population. …


Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn May 2022

Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn

All Dissertations

Biomechanical analysis is widely used to assess human movement sciences, specifically using three-dimensional motion capture modelling. There are unprecedented opportunities to increase quantitative knowledge of rehabilitation and recreation for disadvantaged population groups. Specifically, 3D models and movement profiles for human gait analysis were generated with emphasis on post-stroke patients, with direct model translation to analyze equivalent measurements while horseback riding in use of the alternative form of rehabilitation, equine assisted activities and therapies (EAAT) or hippotherapy (HPOT). Significant improvements in gait symmetry and velocity were found within an inpatient rehabilitation setting for patients following a stroke, and the developed movement …


Mechanical Horse Project, Hernan Ramirez Resendiz, Ben Apt Mar 2022

Mechanical Horse Project, Hernan Ramirez Resendiz, Ben Apt

Mechanical Engineering

This document outlines our senior design project for the Cal Poly Mechanical Engineering Department on behalf of Jack’s Helping Hand. As a team of two Mechanical Engineering students, we developed a structure that can support a rider and can move in three degrees of freedom to model the gait patterns of a horse. This senior project will be continued by another group that will focus on electronics and implement the motors that will induce motion on the structure that our team has built. We collected baseline data by attaching an iPhone to a horse and used that motion to compare …


Characterizing Locomotor Disturbance Perception In Young Adults, Daniel James Liss Jan 2022

Characterizing Locomotor Disturbance Perception In Young Adults, Daniel James Liss

Graduate Theses, Dissertations, and Problem Reports

Falls during walking are a leading cause of injuries across aging. Many of these falls are due to slips and trips. The ability to perceive disturbances to ongoing motion may play an important role in the control of walking balance. However, disturbance perception has been investigated in standing balance, but its role in walking balance due to slip- and trip-like disturbances remains largely unknown. Characterizing locomotor disturbance perception in young adults may lead to a more comprehensive understanding of sensorimotor walking balance control.

This work defined locomotor disturbance perception in response to slip and trip-like disturbances in young adults. We …


Medial And Lateral Tibiofemoral Contact Forces For Individuals With High Body Mass Index In Gait And Cycling Training, Reymil Fernandez Dec 2021

Medial And Lateral Tibiofemoral Contact Forces For Individuals With High Body Mass Index In Gait And Cycling Training, Reymil Fernandez

Master's Theses

The prevalence of knee osteoarthritis, a degenerative joint disease characterized by the degradation of articular cartilage, is correlated with the rise in obesity. The rising rates of obesity in children and adults highlight the need for identifying a sustainable physical activity that promotes fitness while mitigating initiation and progression of osteoarthritis. The objective of this study was to determine an effective rehabilitation and lifelong fitness sustainment exercise regimen that minimize risk of osteoarthritis in individuals with high body mass index (BMI). The aim was to examine knee medial and lateral contact forces in gait and cycling training. Gait at self-selected …


Musculoskeletal Adaptation Of Young And Older Adults In Response To Environmental, Physical, And Cognitive Conditions, Amy E. Holcomb Aug 2021

Musculoskeletal Adaptation Of Young And Older Adults In Response To Environmental, Physical, And Cognitive Conditions, Amy E. Holcomb

Boise State University Theses and Dissertations

Accidental falls present a large functional and financial burden among people aged 65 years and older. Falls, injuries associated with falls, and the fear of falling decrease quality of life, physical function, and independence for older adults. To prevent falls, improve stability, and protect joints from damage or injury, the typical response to "challenging" conditions include cautious gait, increase muscle co-contraction, and decreased range of motion. These compensatory strategies are more pronounced in the older adult population with apprehensive "cautious" gait at slower speeds, decreased knee flexion, and increased muscle activation around the knee and ankle. The underlying mechanisms and …


Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice May 2021

Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice

Doctoral Dissertations

Producing a coordinated motion such as walking is, at its root, the result of healthy communication pathways between the central nervous system and the musculoskeletal system. The central nervous system produces an electrical signal responsible for the excitation of a muscle, and the musculoskeletal system contains the necessary equipment for producing a movement-driving force to achieve a desired motion. Motor control refers to the ability an individual has to produce a desired motion, and the complexity of motor control is a mathematical concept stemming from how the electrical signals from the central nervous system translate to muscle activations. Exercising a …


Feasibility Study To Measure The Impact Of A Specialized Core Exercise On Metabolic Efficiency And Stability During Walking For Above Knee Amputees, Shaye M. Tiell, Sabrina R. Segretario, Serena M. Myers, Emily G. Tully Jan 2021

Feasibility Study To Measure The Impact Of A Specialized Core Exercise On Metabolic Efficiency And Stability During Walking For Above Knee Amputees, Shaye M. Tiell, Sabrina R. Segretario, Serena M. Myers, Emily G. Tully

Williams Honors College, Honors Research Projects

The objective of this study is to determine the feasibility of improving the gait of above-knee (AK) amputees by performing daily core exercises aimed to provide an efficient and stable walking pattern. The goal of the exercise is to strengthen core muscles and form temporary neural connections in the brain aimed at improving metabolic efficiency and stability. We will be implementing the Wright Balance Core 360 Exercise Technique for completion by our subjects. Motion capture technology will be utilized in conjunction with a metabolic oxygen consumption analyzer to collect stability and metabolic efficiency data while amputees walk on a treadmill. …


User Authentication Across Devices, Modalities And Representation: Behavioral Biometric Methods, Amith Kamath Kamath Belman Dec 2020

User Authentication Across Devices, Modalities And Representation: Behavioral Biometric Methods, Amith Kamath Kamath Belman

Dissertations - ALL

Biometrics eliminate the need for a person to remember and reproduce complex secretive information or carry additional hardware in order to authenticate oneself. Behavioral biometrics is a branch of biometrics that focuses on using a person’s behavior or way of doing a task as means of authentication. These tasks can be any common, day to day tasks like walking, sleeping, talking, typing and so on. As interactions with computers and other smart-devices like phones and tablets have become an essential part of modern life, a person’s style of interaction with them can be used as a powerful means of behavioral …


Investigation Of Optimization Targets For Predictive Simulation Of Human Gait With Model Predictive Control, Jessica Brianne Thayer Jul 2020

Investigation Of Optimization Targets For Predictive Simulation Of Human Gait With Model Predictive Control, Jessica Brianne Thayer

Master's Theses (2009 -)

The design and development of gait-related treatments and devices is inhibited by anabsence of predictive gait models. Understanding of human gait and what motivates walkingpatterns is still limited, despite walking being one of the most routine human activities. While asignificant body of literature exists on gait modeling and optimization criteria to achievesimulated, normal gait, particularly with neuromuscular models, few studies have aimed to applyoptimization targets which approximate metabolic cost to mechanical gait models. Even fewerhave attempted this predictively, with no joint angle data specified a priori. The Sunmodel [31], [32] is one such …


Design Of Prototype Prosthesis For A Canine With A Right Front Limb Deformity As An Alternate Approach To Stabilize Gait And Withstand Gait Forces, Tayler R. Kastlunger Jun 2020

Design Of Prototype Prosthesis For A Canine With A Right Front Limb Deformity As An Alternate Approach To Stabilize Gait And Withstand Gait Forces, Tayler R. Kastlunger

Master's Theses

Congenital and developmental limb deformities in canines are rare and can occur as a genetic disorder or be caused by extrinsic factors. Without surgery to correct the deformity, conservative management can be implemented to manage exercise and restrict high-intensity activity of the canine. However, any alteration to the normal gait and locomotive biomechanics of a canine can have significant long-term effects on the musculoskeletal health and quality of life of the canine. To improve quality of life and provide an alternative and more cost-effective approach to surgery, a custom prosthetic was designed and developed for a canine born with a …


Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina May 2020

Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina

Honors Theses

Collie Box is a medical device that measures the gait parameters of the person walk- ing in front of it. This device uses the Ultrasonic Doppler system to extract the heel-contact and toe-off times of a person walking within the range of 2-10 meters. These times are used to determine the leg’s swing phase and double stance times. The ultrasonic transducer of 10mm diameter is driven at 40kHz. At the time of the heel-contact and toe-off, foot velocity is zero while the torso part of the human body is still in motion. The wide directivity of 10mm diameter ultrasonic transducer …


Knee Joint Loading Following Anterior Cruciate Ligament Reconstruction: Link To Patient Reported Outcomes And A Novel Method To Monitor With Wearable Sensors, Alex Spencer Jan 2020

Knee Joint Loading Following Anterior Cruciate Ligament Reconstruction: Link To Patient Reported Outcomes And A Novel Method To Monitor With Wearable Sensors, Alex Spencer

Theses and Dissertations--Kinesiology and Health Promotion

Recovery from anterior cruciate ligament reconstruction (ACLR) commonly results in undesirable physical and patient-reported outcomes (PROs). Identification of modifiable factors such as knee contact force (KCF) early in rehabilitation that can improve these outcomes is important due to the rapid decrease in function, quality of life, and joint health in this population. Additionally, if noninvasive measurement of KCFs outside of a traditional laboratory were possible, clinicians could optimize patient treatment with personalized care. Therefore, there are two primary aims to this thesis: 1) quantify the link between KCF and PROs which measure pain, ability to perform activities of daily living, …


Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen Nov 2019

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen

Doctoral Dissertations

Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying biomechanics of human gait. Predictive simulation can be used for a variety of applications from designing assistive devices to testing theories of motor controls. However, one of the challenges in formulating the predictive dynamic optimization problem is that the cost function, which represents the underlying goal of the walking task (e.g., minimal energy consumption) is generally unknown and is assumed a priori. While different studies used different cost functions, the qualities of the gaits with those cost functions were often not provided. Therefore, this dissertation …


Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado Jul 2019

Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado

Doctoral Dissertations

The goal of this dissertation was to understand how the intrinsic dynamics of gait adapt to support the performance of an ecologically relevant object transport task. A common object transport task is walking with a cup of water. Because the water can move relatively independent of the cup, the cup and water system is classified as a complex object. To model this task participants carried a cup with a wooden lid placed on top. On the lid there was a circular region with the same circumference as the cup and a ball. The object of the task was to keep …


Design And Evaluation Of A Novel Ankle Joint For An Ankle Foot Orthosis For Individuals With Drop-Foot, Eileen Maya Baker Jul 2019

Design And Evaluation Of A Novel Ankle Joint For An Ankle Foot Orthosis For Individuals With Drop-Foot, Eileen Maya Baker

Master's Theses (2009 -)

Individuals who have had a stroke often ambulate with an ankle foot orthosis (AFO) to treat drop-foot, a common impairment preventing active ankle dorsiflexion. AFOs limit ankle plantarflexion or drop-foot, but also restrict ankle motion that introduces additional gait pathologies during ambulation. The goal of this study was to design a mechanical ankle joint for an articulated thermoplastic AFO to permit enhanced motion during stance. This novel ankle joint operated in two stages: 1) locked during swing to prevent drop-foot and 2) unlocked during stance to allow motion. This novel ankle joint was first tested with able-bodied subjects to ensure …


Biomechanics Of Lower Limb During The Golf Swing Using Opensim Modeling, Andrew B. Butler May 2019

Biomechanics Of Lower Limb During The Golf Swing Using Opensim Modeling, Andrew B. Butler

Theses and Dissertations

The purpose of this research is to investigate the biomechanics of the lower-limb using an inverse dynamics model. Experimental data, recorded by an integrated Motion Analysis – Force Plate System in the UTRGV Biomechanics Laboratory, is used to determine ground reaction forces and marker trajectories. OpenSim, a graphical musculoskeletal and computational platform, is used to model the body in three dimensions. The human body is modeled as a 12-segment linkage, consisting of 23 degrees-of-freedom and 92 muscles. The experimental data for the Biomechanics Laboratory is imported in OpenSim. Then, joint angles, generalized coordinates & accelerations of lower-limb segments, muscle forces, …


Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov Dec 2018

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov

Master's Theses

Transtibial amputees are at increased risk of contralateral hip and knee joint osteoarthritis, likely due to abnormal biomechanics. Biomechanical challenges exist for transtibial amputees in gait and cycling; particularly, asymmetry in ground/pedal reaction forces and joint kinetics is well documented and state-of-the-art passive and powered prostheses do not fully restore natural biomechanics. Elliptical training has not been studied as a potential exercise for rehabilitation, nor have any studies been published that compare joint kinematics and kinetics and ground/pedal reaction forces for the same group of transtibial amputees in gait, cycling, and elliptical training. The hypothesis was that hip and knee …


Inverse Dynamic Analysis Of Acl Reconstructed Knee Joint Biomechanics During Gait And Cycling Using Opensim, Megan V. Pottinger Aug 2018

Inverse Dynamic Analysis Of Acl Reconstructed Knee Joint Biomechanics During Gait And Cycling Using Opensim, Megan V. Pottinger

Master's Theses

ACL (anterior cruciate ligament) injuries of the knee joint alter biomechanics and may cause abnormal loading conditions that place patients at a higher risk of developing osteoarthritis (OA). There are multiple types of ACL reconstruction (ACLR), but all types aim to restore anterior tibial translation and internal tibial rotation following surgery. Analyzing knee joint contact loads provide insight into the loading conditions following ACLR that may contribute to the long-term development of OA. Ten ACLR subjects, who underwent the same reconstruction, performed gait and cycling experiments while kinematic and kinetic data were collected. Inverse dynamic analyses were performed on processed …


Human Knee Fea Model For Transtibial Amputee Tibial Cartilage Pressure In Gait And Cycling, Gregory Lane Jun 2018

Human Knee Fea Model For Transtibial Amputee Tibial Cartilage Pressure In Gait And Cycling, Gregory Lane

Master's Theses

Osteoarthritis (OA) is a debilitating disease affecting roughly 31 million Americans. The incidence of OA is significantly higher for persons who have suffered a transtibial amputation. Abnormal cartilage stress can cause higher OA risk, however it is unknown if there is a connection between exercise type and cartilage stress. To help answer this, a tibiofemoral FEA model was created. Utilizing linear elastic isotropic materials and non-linear springs, the model was validated to experimental cadaveric data. In a previous study, 6 control and 6 amputee subjects underwent gait and cycling experiments. The resultant knee loads were analyzed to find the maximum …


Knee Angles And Axes Crosstalk Correction In Gait, Cycling, And Elliptical Training Exercises, Jordan M. Skaro May 2018

Knee Angles And Axes Crosstalk Correction In Gait, Cycling, And Elliptical Training Exercises, Jordan M. Skaro

Master's Theses

When conducting motion analysis using 3-dimensional motion capture technology, errors in marker placement on the knee results in a widely observed phenomenon known as “crosstalk” [1-18] in calculated knee joint angles (i.e., flexion-extension (FE), adduction-abduction (AA), internal-external rotation (IE)). Principal Component Analysis (PCA) has recently been proposed as a post hoc method to reduce crosstalk errors and operates by minimizing the correlation between the knee angles [1, 2]. However, recent studies that have used PCA have neither considered exercises, such as cycling (C) and elliptical training (E), other than gait (G) nor estimated the corrected knee axes following PCA correction. …


Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin Jan 2018

Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin

ETD Archive

Predictive simulations predict human gait by solving a trajectory optimization problem by minimizing energy expenditure. These simulations could predict the effect of a prosthesis on gait before its use. This dissertation has four aims, to show the application of predictive simulations in prosthesis design and to improve the quality of predictive simulations. Aim 1 was to explain joint moment asymmetry in the knee and hip in gait of persons with a transtibial amputation (TTA gait). Predictive simulations showed that an asymmetric gait required less effort. However, a small effort increase yielded a gait with increased joint moment symmetry and reduced …