Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Fuel cell

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 35

Full-Text Articles in Engineering

Materials And Interfaces For Electrocatalytic Hydrogen Production And Utilization., Alexander Jiya Gupta May 2022

Materials And Interfaces For Electrocatalytic Hydrogen Production And Utilization., Alexander Jiya Gupta

Electronic Theses and Dissertations

Mass industrialization over the last few centuries has created a global economy which is dependent upon fossil fuels to satisfy an exponentially increasing demand for energy. Aside from the possible depletion of this finite resource, the combustion of fossil fuels releases greenhouse gases into the atmosphere which cause the global temperature to rise – a phenomenon which has already begun to create geologic and geopolitical instability and shows no signs of abatement. One proposed method to rid humanity of its dependence on fossil fuels is to use green hydrogen as an energy carrier. In this scheme, excess electricity from a …


Polymeric Nanofibers Supported Metal Oxides For Electrochemical Energy Storage Devices, Rutul Patel Dec 2021

Polymeric Nanofibers Supported Metal Oxides For Electrochemical Energy Storage Devices, Rutul Patel

Electronic Theses & Dissertations

With increasing demand for energy, there is an increased need to find effective ways to store the available energy to sustain current and future generations. Thus, the research investigates whether polymetric nanofibers support metal oxide are a good solution to store energy. The materials used for synthesis includes N-dimethylformamide, nickel nitrate, cobalt nitrate and polyacrylonitrile.

These fibers are developed three phases. First, a homogenous mixture is prepared, followed by electrospinning of the mixture. Next, calcination of the prepared nanofibers was done to generate the 1D nanofibers embedded with metal oxides. The samples are primarily tested for supercapacitor applications, hydrogen evolution …


Design Of A 300cm2 Pemfc Stack With Force And Cfd Simulation To Optimize Flow Channels, Gasket Design, And Clamping Forces., Robert M. Ench Dec 2021

Design Of A 300cm2 Pemfc Stack With Force And Cfd Simulation To Optimize Flow Channels, Gasket Design, And Clamping Forces., Robert M. Ench

Electronic Theses and Dissertations

Proton exchange membrane fuel cells are important to the future of green energy as hydrogen can be made with green technologies and store energy for later use. Fuel cells can efficiently convert the hydrogen to electricity as needed. This study uses Solidworks simulation to make design improvements to the fuel cell before the prototype build stage of testing; this saves money and time by reducing the prototype builds needed.

In this study, a multi-channel serpentine design with two outlets versus a single outlet is evaluated using CFD to investigate pressure drop. Lower pressure drops are desirable as less energy input …


Numerical Studies On Liquid Water Transport In Pemfc Cathode With Biomimetic Flow Field Designs, Duy-Khang Dang Oct 2021

Numerical Studies On Liquid Water Transport In Pemfc Cathode With Biomimetic Flow Field Designs, Duy-Khang Dang

Electronic Theses and Dissertations

The performance and durability of proton exchange membrane fuel cells (PEMFCs) are greatly influenced by their water management capability. Therefore, novel flow field designs have been developing by researchers for the improvement of PEMFCs. Among those designs, novel biomimetic designs or so-called nature-inspired designs have captured special attention from researchers due to their capability of distributing fluids effectively with their prominent characteristics such as low pressure drops and efficient fluid distribution. This thesis presents a numerical investigation of the liquid water transport in PEMFC cathode with various biomimetic flow field designs. It includes a symmetrical biomimetic flow field design based …


Manufacturing Of Carbon-Based Hybrid Nanocomposites With Engineered Functionalities Via Laser Ablation Synthesis In Solution (Lasis) Techniques, Erick Leonardo Ribeiro Aug 2020

Manufacturing Of Carbon-Based Hybrid Nanocomposites With Engineered Functionalities Via Laser Ablation Synthesis In Solution (Lasis) Techniques, Erick Leonardo Ribeiro

Doctoral Dissertations

Carbon-based composite materials have long been fabricated and extensively used in our daily lives. In the past decades, with rapid development of nanotechnology, these class of material have gained even more attention owing to their outstanding properties which directly results in their prospects to revolutionize technological development in many fields, ranging from medicine to electronics. Nevertheless, for certain applications, including electrochemical energy storage/conversion devices, the chemically inert nature of these materials creates obstacles and thus requires their coupling with other active species. This thesis explores the use of Laser Ablation Synthesis in Solution (LASiS) in tailoring promising strategies and pathways …


Measurement Of Current Distribution In The Land Channel Direction Of A Proton Exchange Membrane Fuel Cell, Chinmay Kulkarni Jan 2020

Measurement Of Current Distribution In The Land Channel Direction Of A Proton Exchange Membrane Fuel Cell, Chinmay Kulkarni

Dissertations, Master's Theses and Master's Reports

A fully functional proton exchange membrane fuel cell with single land channel geometry on the cathode and segmented anode current collector with 9 mm2 active area with a 350μm spatial resolution was utilized to measure the local current distribution in the land channel direction. A distinguished printed circuit board approach was used for the data acquisition to adapt to any flow field design.

Performance of this segmented cell was examined at dry, wet and moderate humidity settings to study the water transport phenomenon in the PEMFC. In the dry condition at 60 ͦ C with 0% relative humidity, the …


Anion Exchange And Bipolar Membranes For Electrochemical Energy Conversion And Storage, Zhongyang Wang Dec 2019

Anion Exchange And Bipolar Membranes For Electrochemical Energy Conversion And Storage, Zhongyang Wang

McKelvey School of Engineering Theses & Dissertations

Anion exchange and bipolar membrane fuel cells generate electrical energy directly from chemical fuels and have attracted considerable interests as alternate power sources for large market applications, such as transportation (hydrogen fuel cells) and unmanned vehicles (sodium borohydride fuel cells). Anion exchange membrane (AEM), generally composed of a polymer with covalently tethered ionic groups, is the central component of the fuel cell serving as the electrolyte, conducting hydroxide ions from cathode to anode, where fast ionic conduction is directly related to power output. However, AEMs currently used in fuel cells (H2 fuel cells and sodium borohydride fuel cells) exhibit ion …


Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen Nov 2018

Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen

Chemical and Biological Engineering ETDs

With the increasing demand on renewable energy, the fuel cell has attracted more and more interests because of its large power density and controllable size. However, the insufficiency of element abundance and unstable expensive price of conventional platinum-based electrocatalysts used in anode and cathode makes it essential to find their substitutes. As one of the most promising candidates to be used in cathode for oxygen reduction reaction (ORR), iron-nitrogen-carbon (Fe-N-C) catalysts have been widely investigated and get commercialized recently, but still lacks comprehensive understanding on the kinetic mechanism.

This dissertation has been divided into three parts with a discussion on …


Homogeneous Reaction Kinetics Of Carbohydrates With Viologen Catalysts For Biofuel Cell Applications, Hilary Bingham Jul 2018

Homogeneous Reaction Kinetics Of Carbohydrates With Viologen Catalysts For Biofuel Cell Applications, Hilary Bingham

Theses and Dissertations

Energy usage is continually on the rise and significant efforts are being extended to provide more renewable energy. One area of exploration is the development of fuel cells, which includes biofuel cells that can extract energy from carbohydrates obtained from biomass. Recently, viologen catalysts have been shown to enhance reaction rates of energy extraction and improve carbohydrate conversion efficiencies. However, characterizing the effects of process parameters such as pH, reactant concentrations, and carbohydrate exposure time to buffer solutions with a rigorous model is lacking. This thesis characterizes the homogeneous reaction between carbohydrates and a methyl viologen catalyst to provide insights …


An Investigation Of The Effects Of The Second Pyrolysis On The Chemistry, Morphology, And Performance Of Iron-Nicarbazin Catalysts, Elizabeth B. Weiler Apr 2018

An Investigation Of The Effects Of The Second Pyrolysis On The Chemistry, Morphology, And Performance Of Iron-Nicarbazin Catalysts, Elizabeth B. Weiler

Chemical and Biological Engineering ETDs

Proton exchange membrane fuel cells offer a cost-effective, environmentally friendly, and sustainable alternative to petroleum-based power sources to the transportation sector. However, slow electrochemical reactions at the cathode of these fuel cell prevent the technology from being competitive. Iron-nitrogen-carbon based catalysts have emerged as a viable answer to this problem, yet further progress is needed to improve their performance beyond that of current state-of-the-art platinum-based catalysts, which are economically and geopolitically impractical to be a final solution. Currently, a two-step high temperature pyrolysis method has proven a promising way to synthesize iron-nitrogen-carbon catalysts for optimized performance, but there is a …


Anodic Catalysts For Anion Exchange Membrane Fuel Cells, Aaron Joseph Roy Dec 2017

Anodic Catalysts For Anion Exchange Membrane Fuel Cells, Aaron Joseph Roy

Chemical and Biological Engineering ETDs

With a limited availability of energy resources from petroleum and other fossil fuels, as well as growing concerns relating to the environmental implications of fossil fuel emissions, non-carbon fuels which can be utilized in proton and anion exchange membrane fuel cells (PEMFC’s/AEMFC’s), such as hydrogen and hydrazine hydrate (HH), are becoming more attractive as alternative fuels. Historically, platinum and platinum group metal catalysts (PGM) have been used as cathode and anode catalyst materials for both PEMFC’s and AEMFC’s. Although these catalysts are the highest performing catalysts available for the conversion of hydrogen energy in fuel cells, the limited availability and …


Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont Jul 2017

Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont

Nanoscience and Microsystems ETDs

The world currently relies heavily on fossil fuels such as coal, oil, and natural gas for its energy. Fossil fuels are non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. One alternative source of energy are fuel cells, electrochemical devices that convert chemical energy to cleanly and efficiently produce electricity. They can be used in a wide range of applications, including transportation, stationary, portable and emergency power sources. Their development has been slowed by the high cost of PGM electrocatalysts needed at both electrodes as well as sluggish …


Synthesis And Characterization Of Molybdenum Sulfide And For Hydrogen Evolution Reaction And Supercapacitor Applications, Zhuo Wang May 2017

Synthesis And Characterization Of Molybdenum Sulfide And For Hydrogen Evolution Reaction And Supercapacitor Applications, Zhuo Wang

Electronic Theses & Dissertations

To meet the constantly rising requirement of energy other than traditional fossil fuel and environment protection, it is a perfect time to development low cost, and efficient materials for clean energy production. Hydrogen generation by water splitting is one of the cleanest ways to produce cheaper energy. Hydrogen evolution reaction (HER) is one of the key steps in water splitting process. Ideally, the thermodynamic potential for HER should be at 0 V (vs. SHE). However, without an efficient catalyst, this reaction occurred at higher potential, called overpotential. A good HER catalyst is needed to lower the overpotential and hence to …


A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman Mar 2017

A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman

Nanoscience and Microsystems ETDs

Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed.

There has …


Renewable Carbon From Lignin Biomass And Its Electrode And Catalyst Applications In Batteries, Supercapacitors, And Fuel Cells, Muslum Demir Jan 2017

Renewable Carbon From Lignin Biomass And Its Electrode And Catalyst Applications In Batteries, Supercapacitors, And Fuel Cells, Muslum Demir

Theses and Dissertations

Over the last century, almost all of the carbon materials developed for the energy industry are derived from fossil fuels. The growing global concerns about energy needs, fossil fuels consumption, and the related environmental issues have motived scientists to find new, green and sustainable energy resources such as the wind, solar and biomass energy. Essentially, biomass-derived materials can be utilized in energy storage and conversion devices such as Li-ion batteries, fuel cells, and supercapacitors. Among the biomass resources, lignin is a high volume byproduct from the pulp and paper industry and is currently burned to generate electricity and steam. The …


Platinum-Rhodium Alloy Electrocatalyst Activities In The Methanol Oxidation Reaction, William R. Sandorf Jan 2017

Platinum-Rhodium Alloy Electrocatalyst Activities In The Methanol Oxidation Reaction, William R. Sandorf

Williams Honors College, Honors Research Projects

This study evaluates the electrochemical activity of several compositions of platinum-rhodium alloys on carbon support to identify potential replacements for the expensive platinum electrocatalysts currently used in direct methanol fuel cells (DMFCs). The electrochemical active surface areas (ECSAs) of each sample were determined using cyclic voltammetry (CV) in a 0.5 M H2SO4 solution to normalize CV currents generated in the methanol oxidation reaction (MOR). The activity of five compositions was tested; Pt3Rh, Pt2Rh, PtRh, Pt2Rh, and Pt3Rh. 100 mg of each catalyst was synthesized at 10% by weight platinum …


A Characterization Study On Catalyst Layers In Proton Exchange Membrane Fuel Cells, Luyue Li May 2016

A Characterization Study On Catalyst Layers In Proton Exchange Membrane Fuel Cells, Luyue Li

Doctoral Dissertations

This thesis describes the work for the catalyst layer (CL) characterization study of proton exchange membranes (PEM) for fuel cells. In particular, both the structure and performance of catalyst layers with alternative ionomers were studied. Structure wise, the morphology, surface area and pore size distribution studies were accomplished with scanning electron microscopy (SEM), transmission electron microscope (TEM) and nitrogen adsorption processed through Brunauer–Emmett–Teller (BET) and Barrett-Joyner-Halenda (BJH) theory. Water uptake isotherms of the CLs have been developed under well controlled relative humidity (RH) levels. The performance characterization focuses on polarization study, catalyst layer proton conductivity measurement and estimation of the …


Nanostructured Carbon Materials For Active And Durable Electrocatalysts And Supports In Fuel Cells, Adam Riese Sep 2015

Nanostructured Carbon Materials For Active And Durable Electrocatalysts And Supports In Fuel Cells, Adam Riese

Electronic Thesis and Dissertation Repository

Meeting the energy demands of the future will require a breadth of technologies and materials for generating and converting electricity. Increasing activity and reducing costs of electrocatalysts for fuel cells is among the most important challenges for the technology. With advances in nanomaterials there has been increased interest in creating novel catalysts with both high activity and excellent long-term durability. This thesis aims to understand how modification of nanostructured carbons can be used to improve the activity and durability of catalysts and supports for the oxygen reduction reaction (ORR). Using an integrating approach to synthesis, characterization, and electrochemical testing, it …


Vapor Synthesis And Thermal Evolution Of Supportless, Metal Nanotubes And Application As Electrocatalysts, Robert William Atkinson Aug 2015

Vapor Synthesis And Thermal Evolution Of Supportless, Metal Nanotubes And Application As Electrocatalysts, Robert William Atkinson

Doctoral Dissertations

One of the major limitations of proton exchange membrane fuel cells (PEMFCs) is the high cost and poor durability of the currently preferred catalyst design, small Pt nanoparticles supported on high surface area carbon (Pt/C). Unsupported, high-aspect ratio nanostructured catalysts, or extended surface catalysts, are a promising paradigm as electrocatalysts for a number of electrochemical reactions. These extended surface catalysts generally exhibit higher specific activities compared to their carbon-supported nanoparticle counterparts that have been ascribed to their unique electronic, surface and structural properties. Extended surface catalysts frequently maintain enhanced durability over supported catalysts during fuel cell operation because they are …


Quantifying Individual Losses In A Direct Methanol Fuel Cell, Jennifer Rae Ruffing Dec 2014

Quantifying Individual Losses In A Direct Methanol Fuel Cell, Jennifer Rae Ruffing

Theses and Dissertations

The performance of a direct methanol fuel cell (DMFC) is complicated due to the complex interactions of kinetic and transport processes. As a result, changes in one aspect of the cell have consequences in other aspects, which are difficult to elucidate from the full-cell polarization (i.e. voltage vs. current) behavior that fuel cell researchers often use to characterize the performance of their systems. The objective of this work was to develop a strategy to use current and voltage relationships from anode half cells, cathode half-cells, and a hydrogen pump, coupled with methanol crossover data and a mathematical model, to quantify …


Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark May 2014

Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark

Doctoral Dissertations

A molecular-level understanding of the factors that contribute to transport properties of proton exchange membranes (PEMs) for fuel cell applications is needed to aid in the development of superior membrane materials. Ab initio electronic structure calculations were undertaken on various PEM ionomer fragments to explore the effects of local hydration, side chain connectivity, protogenic group separation, and specific side chain chemistry on proton dissociation and transfer at low hydration. Cooperative interactions between both intra- and inter-molecular acidic groups and hydrogen bond connectivity were found to enhance proton dissociation at very low degrees of hydration. The energetics associated with proton transfer …


Water Transport In Polymer Electrolyte Fuel Cells: An Exploration Of Net Water Drag In Real Time, Susan Katherine Reid May 2013

Water Transport In Polymer Electrolyte Fuel Cells: An Exploration Of Net Water Drag In Real Time, Susan Katherine Reid

Masters Theses

Polymer electrolyte fuel cells (PEFCs) are a promising alternative energy source. One challenge preventing widespread use of this technology is water management. A balance must be reached between providing sufficient water for membrane ionic conductivity while maintaining low enough water content to mitigate the reduction of available reaction sites in the cathode catalyst layer due to liquid water build up. Much exploration of this area of fuel cell research has been conducted, but the details of water transport in an operating fuel cell are not yet fully understood. The motivation of this work was to elucidate mass transport phenomena occurring …


Immobilized Viologen Polymer For Use In Direct Carbohydrate Fuel Cells, Yining Pan Mar 2013

Immobilized Viologen Polymer For Use In Direct Carbohydrate Fuel Cells, Yining Pan

Theses and Dissertations

Glucose and other carbohydrates are some of the most abundant renewable energy sources in the world. The oxidation of carbohydrates in a fuel cell allows their chemical energy to be converted directly into electrical energy. Viologen has been indentified and shows promising ability as an electron-transfer catalyst or mediator for carbohydrate oxidation in an alkaline carbohydrate fuel cell. Building on the previous results, the objective of this work was to develop an immobilization chemistry of viologen onto an electrode and to investigate the catalytic activity for carbohydrate oxidation in direct carbohydrate fuel cells.The immobilization was achieved by electropolymerizing a novel …


The Effect Of Bi-Polar Plate And Membrane Materials On Water Transport In Pemfcs, Visarn Lilavivat Jan 2013

The Effect Of Bi-Polar Plate And Membrane Materials On Water Transport In Pemfcs, Visarn Lilavivat

Theses and Dissertations

An analysis of liquid water transport and removal in Proton Exchange Membrane Fuel Cells (PEMFCs) as affected by different membranes and the geometry and surface roughness of bipolar plates on is presented. Four topics are considered. First, the channel dimension and shape of various flow fields have been shown to affect the cell performance and the uniformity in the distributions of current. Typical variations in the channel width, height, and undercut that may occur with manufactured metal plates are studied. These sample-to-sample variations and distributions are studied and compared with laboratory-scale graphite plates. The goal of the work is to …


The Role Of Transport Phenomena In The Direct Oxidation Of Solid Fuels, Charles J. Banas Aug 2012

The Role Of Transport Phenomena In The Direct Oxidation Of Solid Fuels, Charles J. Banas

Master's Theses

Direct carbon fuel cells have shown promise for stationary power generation by utilizing the direct oxidation of a solid carbon fuel source at the anode. In laboratory settings, researchers have reported up to 300mA/cm2 of current density from these cells types which suffer from mass transport losses. This paper studies the surface properties of the solid fuel source, and describes the process of CO2 evolution through an analogy to pool boiling. In nucleate boiling (a subset of pool boiling) vapor bubbles grow from nucleation sites where gas are trapped in micro-cavities on the surface. Carbon surfaces possess these same features, …


Homogeneous Viologens For Use As Catalysts In Direct Carbohydrate Fuel Cells, Dane C. Hansen Jul 2012

Homogeneous Viologens For Use As Catalysts In Direct Carbohydrate Fuel Cells, Dane C. Hansen

Theses and Dissertations

Deriving electrical energy from glucose and other carbohydrates under mild conditions is an important research objective because these biomolecules are abundant, renewable, and can provide 12 to 24 electrons per molecule, yielding substantial electrical power. It was previously observed that disubstituted viologens, salts of N,N'-disubstituted 4,4'-bipyridine, are able to oxidize glucose under alkaline conditions. Building on that initial result, the objective of this work was to understand and quantify the effectiveness and utility of viologens as catalysts for use in direct carbohydrate fuel cells.The extent that viologens oxidize carbohydrates, the conditions under which that oxidation occurs, and the mechanism for …


Advanced Nanostructured Electro-Catalysts For Electricity Generation And Biorenewable Alcohol Conversion, Zhiyong Zhang Jan 2012

Advanced Nanostructured Electro-Catalysts For Electricity Generation And Biorenewable Alcohol Conversion, Zhiyong Zhang

Dissertations, Master's Theses and Master's Reports - Open

In my Ph.D research, a wet chemistry-based organic solution phase reduction method was developed, and was successfully applied in the preparation of a series of advanced electro-catalysts, including 0-dimensional (0-D) Pt, Pd, Au, and Pd-Ni nanoparticles (NPs), 1-D Pt-Fe nanowires (NWs) and 2-D Pd-Fe nanoleaves (NLs), with controlled size, shape, and morphology. These nanostructured catalysts have demonstrated unique electro-catalytic functions towards electricity production and biorenewable alcohol conversion.

The molecular oxygen reduction reaction (ORR) is a long-standing scientific issue for fuel cells due to its sluggish kinetics and the poor catalyst durability. The activity and durability of an electro-catalyst is strongly …


Novel Design Of Functionalized Carbon Nanotube Electrodes And Membranes For Fuel Cells And Energy Storage, Xin Su Jan 2012

Novel Design Of Functionalized Carbon Nanotube Electrodes And Membranes For Fuel Cells And Energy Storage, Xin Su

Theses and Dissertations--Chemical and Materials Engineering

A novel electrochemical method to generate nm-scale bubbles at the tips of CNTs can temporarily block the membrane. A 92% blocking efficiency is achieved when the bubbles are stabilized in 30-60 nm diameter „wells‟ at the tips of CNTs. This well is formed by the electrochemical oxidation of the conductive CNTs partially into the polymer matrix of the membrane. Meanwhile, the nanoscale bubbles can be removed with 0.004 atm pressure to recover the transport through the CNT membrane. The CNT membrane with nanoscale bubble valve system was used to demonstrate electrochemical energy storage.

Uniform ultrathin Pt films were electrodeposited onto …


Investigations On The Corrosion Resistance Of Metallic Bipolar Plates (Bpp) In Proton Exchange Membrane Fuel Cells (Pemfc) - Understanding Of The Effects Of Material, Coating And Manufacturing, Ender Dur Nov 2011

Investigations On The Corrosion Resistance Of Metallic Bipolar Plates (Bpp) In Proton Exchange Membrane Fuel Cells (Pemfc) - Understanding Of The Effects Of Material, Coating And Manufacturing, Ender Dur

Theses and Dissertations

Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material …


Battery Electric Vehicle And Hybrid Fuel-Cell/Battery Electric Vehicle For Epa P3 2011 Competition, Yue Cao, Jonathan M. Coplon, Eugene V. Ng, Michael C. Pickelsimer May 2011

Battery Electric Vehicle And Hybrid Fuel-Cell/Battery Electric Vehicle For Epa P3 2011 Competition, Yue Cao, Jonathan M. Coplon, Eugene V. Ng, Michael C. Pickelsimer

Chancellor’s Honors Program Projects

No abstract provided.