Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi Dec 2018

Comparative Study Of Power Semiconductor Devices In A Multilevel Cascaded H-Bridge Inverter, Kenneth Mordi

Graduate Theses and Dissertations

This thesis compares the performance of a nine-level transformerless cascaded H-bridge (CHB) inverter with integrated battery energy storage system (BESS) using SiC power MOSFETs and Si IGBTs. Two crucial performance drivers for inverter applications are power loss and efficiency. Both of these are investigated in this thesis. Power devices with similar voltage and current ratings are used in the same inverter topology, and the performance of each device is analyzed with respect to switching frequency and operating temperature. The loss measurements and characteristics within the inverter are discussed. The Saber® simulation software was used for the comparisons. The power MOSFET …


Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck May 2018

Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck

Senior Theses

The field of thermoelectrics has many applications, and more are found in everyday systems. From its current studies, it is apparent that improving the figure of merit zT (which defines a good thermoelectric material) is important in the effectiveness of power generation. Another important part of thermoelectrics is the duality of these devices. They can both move heat and generate power, depending on their role in the system. In this thesis research, a process was made to test these thermoelectric relationships for a few Peltier devices in order to understand their efficiencies and what systems they can be applied to.


Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister Jan 2016

Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister

Senior Projects Spring 2016

This project is comprised of a set of parallel investigations, which share the common mo- tivation of increasing the efficiency of photovoltaics. First, the reader is introduced to core concepts of photovoltaic energy conversion via a semi-classical description of the phys- ical system. Second, a key player in photovoltaic efficiency calculations, the exciton, is discussed in greater quantum mechanical detail. The reader will be taken through a nu- merical derivation of the low-energy exciton states in various geometries, including a line segment, a circle and a sphere. These numerical calculations are done using Mathematica, a computer program which, due to …


Quantum Dot Deposition Into Pdms And Application Onto A Solar Cell, Christopher Marcus Botros, Richard N. Savage Dec 2012

Quantum Dot Deposition Into Pdms And Application Onto A Solar Cell, Christopher Marcus Botros, Richard N. Savage

Master's Theses

Research to increase the efficiency of conventional solar cells is constantly underway. The goal of this work is to increase the efficiency of conventional solar cells by incorporating quantum dot (QD) nanoparticles in the absorption mechanism. The strategy is to have the QDs absorb UV and fluoresce photons in the visible region that are more readily absorbed by the cells. The outcome is that the cells have more visible photons to absorb and have increased power output. The QDs, having a CdSe core and a ZnS shell, were applied to the solar cells as follows. First, the QDs were synthesized …