Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Laser Stimulated Dynamic Thermal Imaging System For Tumor Detection, Hongyu Meng Dec 2021

Laser Stimulated Dynamic Thermal Imaging System For Tumor Detection, Hongyu Meng

McKelvey School of Engineering Theses & Dissertations

Laser stimulated dynamic thermal imaging system for tumor detectionby Hongyu Meng Doctor of Philosophy in Biomedical Engineering Washington University in St. Louis, 2021 Professor Samuel Achilefu, Chair Recent advances in infrared sensor technology have enabled the rapid application of thermal imaging in materials science, security and medicine. Relying on the infrared characteristics of living systems, thermal imaging has been used to generate individual heat maps, detect inflammation and tumor. As an imaging system, thermal imaging has the advantages of portability, real-time, non-invasive, and non-contact. But the low specificity of thermal imaging hinders its wide clinical application.

Unfortunately, label-free DTI is …


Mechanosensitive Epithelial Cell Scattering And Migration On Layered Matrices, Christopher Michael Walter Aug 2019

Mechanosensitive Epithelial Cell Scattering And Migration On Layered Matrices, Christopher Michael Walter

McKelvey School of Engineering Theses & Dissertations

Epithelial cells form multi-layered tissue scaffolding that makes up every organ in the body. Along with epithelial cells, the basement membrane (BM) and connective tissue are composed of various proteins that sculpt the organs and protect them from foreign macromolecules. Epithelial cells respond to various cues, both chemical and mechanical, from their surrounding matrices to aid in maintenance and repair of these layers through degradation and deposition of extracellular matrix (ECM) proteins. In cancer progression, epithelial cells lose their normal function of supporting tissue structure and instead adopt more aggressive behaviors through an epithelial-to-mesenchymal transition (EMT) of their cellular traits. …


Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller May 2018

Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller

McKelvey School of Engineering Theses & Dissertations

Optical imaging for medical applications is a growing field, and it has the potential to improve medical outcomes through its increased sensitivity and specificity, lower cost, and small instrumentation footprint as compared to other imaging modalities. The method holds great promise, ranging from direct clinical use as a diagnostic or therapeutic tool, to pre-clinical applications for increased understanding of pathology. Additionally, optical imaging uses non-ionizing radiation which is safe for patients, so it can be used for repeated imaging procedures to monitor therapy, guide treatment, and provide real-time feedback. The versatile features of fluorescence-based optical imaging make it suited for …


Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som May 2018

Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som

McKelvey School of Engineering Theses & Dissertations

Enormous progress has been made to treat cancer, and yet the mortality rate of cancer remains unacceptably high. High clinical resistance to molecularly targeted therapeutics has pushed interest again towards inhibiting universal biochemical hallmarks of cancer. Recent evidence suggests that malignant tumors acidify the local extracellular environment to activate proteases for degrading the tumor matrix, which facilitates metastasis, and explains why more aggressive tumors are more acidic. Current therapies have only focused on using the low pH for enhancing drug release in tumors, thereby still relying on the traditional paradigm of intracellular inhibition of pathways, a method that continues to …


Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson Aug 2017

Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson

McKelvey School of Engineering Theses & Dissertations

Despite enormous efforts, cancer remains a leading cause of morbidity and mortality world-wide. The main challenges currently facing cancer therapy include lack of adequate tumor targeting, failure to treat hypoxic tumor cells, and induction therapy resistant tumors. A solution to these limitations can be found in photodynamic therapy (PDT) which combines light and light activatable compounds, photosensitizers (PSs), to produce cytotoxic reactive oxygen species (ROS) to damage tumor tissue. This creates a spatiotemporal therapeutic effect, where cell damage only occurs at the intersection of the PS and light. PDT can treat tumors through unique mechanisms which reduce induction of tumor …


State Space Analysis Of Dominant Structures In Dynamic Social Systems, Jeremy B. Sato Aug 2016

State Space Analysis Of Dominant Structures In Dynamic Social Systems, Jeremy B. Sato

McKelvey School of Engineering Theses & Dissertations

Many systems involving human relationships are modeled as dynamic systems, as diverse as urban population growth, diffusion of innovations, spread of viruses, and supply chain management. A fundamental assumption is that these systems contain variables which accumulate and deplete over time (people, innovation adoptions, infections, and orders), and whose dynamics are determined by societal rules and human decision making processes. These assumptions allow the system to be formally expressed by ordinary differential equations which are often nonlinear and contain multiple state variables and feedback loops. Analytical methods have been developed to identify the dominant feedback loops which primarily influence the …


A Four-Dimensional Image Reconstruction Framework For Pet Under Arbitrary Geometries, Aswin John Mathews Dec 2014

A Four-Dimensional Image Reconstruction Framework For Pet Under Arbitrary Geometries, Aswin John Mathews

McKelvey School of Engineering Theses & Dissertations

Positron Emission Tomography (PET) is a functional imaging modality with applications ranging from the treatment of cancer, studying neurological diseases and disease models. Virtual-Pinhole PET technology improves the image quality in terms of resolution and contrast recovery. The technology calls for having a detector with smaller crystals placed near a region of interest in a conventional whole-body PET scanner. The improvement is from the higher spatial sampling of the imaging area near the detector. A prototype half-ring PET insert built to study head-and-neck cancer imaging was extended to breast cancer imaging. We have built a prototype half-ring PET insert for …