Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Cancer

Biomedical Engineering and Bioengineering

Institution
Publication Year
Publication

Articles 1 - 30 of 52

Full-Text Articles in Engineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Microwave Imaging Technique For Breast Cancer Detection, Nure Alam Chowdhury May 2024

Microwave Imaging Technique For Breast Cancer Detection, Nure Alam Chowdhury

Theses and Dissertations

Breast cancer is a global problem, and it is inevitable to detect cancerous cells at early stages. In recent years, microwave imaging technology has been widely applied in biomedical applications for its non-ionizing radiation. In this study, we design a micro-strip patch antenna with an inverted T-type notch in the partial ground to detect tumor cells inside the human breast. The size of the current antenna is small enough (18 mm × 21 mm × 1.6 mm) to distribute around the breast phantom. The operating frequency has been observed from 6–14 GHz with a minimum return loss of −61.18 dB …


Cancer Treatment By Targeting Hdac4 Translocation Induced By Microsecond Pulsed Electric Field Exposure: Mechanistic Insights Through Kinases And Phosphatases, Zahra Safaei Jan 2024

Cancer Treatment By Targeting Hdac4 Translocation Induced By Microsecond Pulsed Electric Field Exposure: Mechanistic Insights Through Kinases And Phosphatases, Zahra Safaei

Theses and Dissertations

Epigenetic modifications, arising from sub-cellular shifts in histone deacetylase (HDAC) activity and localization, present promising strategies for diverse cancer treatments. HDACs, enzymes responsible for post-translational histone modifications, induce these epigenetic changes by removing acetyl groups from ε-N-acetyl-lysine residues on histones, thereby suppressing gene transcription. Within the HDAC group, class IIa HDACs are notable for their responsiveness to extracellular signals, bridging the gap between external stimuli, plasma membrane, and genome through nuclear-cytoplasmic translocation. This localization offers two significant mechanisms for cancer treatment: nuclear accumulation of HDACs represses oncogenic transcription factors, such as myocyte-specific enhancer factor 2C (MEF2C), triggering various cell death …


Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad Sep 2023

Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad

Dissertations, Theses, and Capstone Projects

In recent years, nanosensors have emerged as a tool with strong potential in medical diagnostics. Single-walled carbon nanotube (SWCNT) based optical nanosensors have notably garnered interest due to the unique characteristics of their near-infrared fluorescence emission, including tissue transparency, photostability, and various chiralities with discrete absorption and fluorescence emission bands. Additionally, the optoelectronic properties of SWCNT are sensitive to the surrounding environment, which makes them suitable for in vitro and in vivo biosensing. Single-stranded (ss) DNA-wrapped SWCNTs have been reported as optical nanosensors for cancers and metabolic diseases. Breast cancer and cardiovascular diseases are the most common causes of death …


An In Vivo Biocompatibility Analysis Of A Novel Tissue Regeneration Matrix Using A Pig Model, Shamar Thomas May 2023

An In Vivo Biocompatibility Analysis Of A Novel Tissue Regeneration Matrix Using A Pig Model, Shamar Thomas

All Theses

The goal of this project is to develop an injectable bead scaffold to promote tissue regeneration in the void created by lumpectomy and to alleviate post lumpectomy problems by preventing local recurrence and minimizing surgical-related infections. Microbeads were synthesized from collagen type I and crosslinked with tannic acid to form the basis for this injectable therapeutic. Tannic acid acts as a therapeutic anticancer agent. The action mechanisms of tannins in breast cancer cells have been studied with studies showing tannins to be cytotoxic to cancer cells in a dose-dependent manner. Tannic acid induces apoptosis in breast cancer cells via caspase …


Multiscale Anisotropy Analysis Of Second-Harmonic Generation Imaging Of Pancreatic Cancer, Joshua D. Hamilton Aug 2022

Multiscale Anisotropy Analysis Of Second-Harmonic Generation Imaging Of Pancreatic Cancer, Joshua D. Hamilton

Electronic Theses and Dissertations

Despite recent advancements in biomedicine, cancer is still the second leading cause of death in the United States. Early detection of cancer is critical to improving patient care, but there are risks of over screening caused by the need for surgical biopsies in many cancers for final diagnostics. Recent advancements in computer aided diagnostics for breast cancer screening has reduced the need for biopsies and resulted in earlier diagnoses which has lowered the mortality rate from breast cancer within the past two decades. Developing new computer aided diagnostic tools that can be applied to a vast majority of cancers would …


Long Non-Coding Rna Pvt1 – An Exploratory Study In Ovarian And Endometrial Cancer, Kevin Tabury Jul 2022

Long Non-Coding Rna Pvt1 – An Exploratory Study In Ovarian And Endometrial Cancer, Kevin Tabury

Theses and Dissertations

Gynecological cancers, ovarian and endometrial cancer, are still leading causes of cancer-related death in women worldwide. Early detection methods as well as treatment resistance remain a challenge. Long non-coding RNAs (lncRNAs) are emerging as therapeutic targets with diagnostic and prognostic potential with lncRNA PVT1 being one of them.

Here I test and demonstrate the role of PVT1 in ovarian cancer growth and metastasis. PVT1 is amplified and overexpressed in ovarian cancer and has predictive value for survival and response to targeted therapeutics. We find that expression of PVT1 is regulated by tumor cells in response to cellular stress, particularly loss …


Sequential Illumination In A Tomographic Microendoscopic Probe For Imaging Tumor Microvasculature, Zachariah Neumeier May 2022

Sequential Illumination In A Tomographic Microendoscopic Probe For Imaging Tumor Microvasculature, Zachariah Neumeier

Biomedical Engineering Undergraduate Honors Theses

Knowledge of colorectal cancer biology is improving how we approach cancer treatment. Specifically, the tumor microenvironment and abnormal angiogenesis are of particular interest. Optical methods are a prime candidate for research of the tumor microenvironment due to their ability to quantitively assess tissue structure and perfusion in real time. Particularly, the “transport scattering regime” has been identified as a method of obtaining high-resolution images and reflectance spectroscopy data; this light scattering regime has been demonstrated compatible with endoscopic imaging systems. In this study, a proof-of-concept optical imaging system is presented, capable of resolving absorbers within scattering turbid media using a …


A Modeling Platform To Predict Cancer Survival And Therapy Outcomes Using Tumor Tissue Derived Metabolomics Data., Hunter Allan Miller May 2022

A Modeling Platform To Predict Cancer Survival And Therapy Outcomes Using Tumor Tissue Derived Metabolomics Data., Hunter Allan Miller

Electronic Theses and Dissertations

Cancer is a complex and broad disease that is challenging to treat, partially due to the vast molecular heterogeneity among patients even within the same subtype. Currently, no reliable method exists to determine which potential first-line therapy would be most effective for a specific patient, as randomized clinical trials have concluded that no single regimen may be significantly more effective than others. One ongoing challenge in the field of oncology is the search for personalization of cancer treatment based on patient data. With an interdisciplinary approach, we show that tumor-tissue derived metabolomics data is capable of predicting clinical response to …


Phase-Changing Nanodroplets As Nanotheranostic Platform For Combination Cancer Therapy, Catalina-Paula Spatarelu Jan 2022

Phase-Changing Nanodroplets As Nanotheranostic Platform For Combination Cancer Therapy, Catalina-Paula Spatarelu

Dartmouth College Ph.D Dissertations

Cancer is a cluster of diseases, and 1.8 million Americans are newly diagnosed each year. Treatment issues such as drug instability, the occurrence of severe side effects, as well as resistance make the need for solutions to improve conventional methods, like chemotherapy, apparent. Nano-sized drug-delivery platforms, particles loaded with therapeutic molecules that escape the immune system clearance and accumulate at the tumor site, were proposed as one of these solutions. Despite the expansion of the field, several aspects still need to be addressed: inconsistent delivery of the drugs, inability of measuring the effective dose being delivered to the tumor, lack …


Novel Microfabricated Systems To Elucidate The Role Of Anisotropic Stiffness In The Tumor Microenvironment, Jiten Narang Jan 2022

Novel Microfabricated Systems To Elucidate The Role Of Anisotropic Stiffness In The Tumor Microenvironment, Jiten Narang

Theses and Dissertations

Cancer is the second leading cause of death in women and late stage (metastatic) cancers have abysmal survival rates compared to early stage regional cases (27% vs 86%). As a tumor grows, the surrounding extracellular matrix (ECM) is reorganized into a dense, collagen rich matrix. The new matrix of aligned collagen fibers provides unique mechanical cues such as anisotropic stiffness and contact guidance. Matrix turnover also constricts local vasculature and restricts delivery of key nutrients and signaling molecules to malignant cells to outside the tumor creating a chemotactic gradient from outside to inside. In this work, we developed a novel …


The Investigations Of Nps Modulated Immunity And Immunometabolism, Brittney Leigh Ruedlinger Dec 2021

The Investigations Of Nps Modulated Immunity And Immunometabolism, Brittney Leigh Ruedlinger

Biomedical Sciences Theses & Dissertations

Cancers remain in the top noncommunicable diseases responsible for premature mortality. The heterogeneity among cancers and within tumors makes treating them ever more challenging. Our misfortune for developing cures is mocked by cancer, with the lowest probability of success (PoS) through clinical trials and FDA approval. At the basic level, there are generally two broad gaps impeding cancer eradication: the unidentified shared mechanism(s) exploited by all cancers and the therapeutic approach to intervene. Nanosecond pulse stimulation (NPS) offers a unique approach since its broad impacts intersect those often hijacked by oncogenesis. Metabolic pathways, known for dysfunctions among cancers, share a …


Diagnosis Of Melanoma Disease State From Patient Blood Samples Using Photoacoustic Flow Cytometry, Jacob Salvatore May 2021

Diagnosis Of Melanoma Disease State From Patient Blood Samples Using Photoacoustic Flow Cytometry, Jacob Salvatore

Electronic Theses and Dissertations

Approximately 1 in 50 Americans develop melanoma in their lifetime. Early detection of melanoma is pivotal to the survival of the patient, with a 99% survival rate for 5 or more years after an early diagnosis. Metastasis, or the spread of cancer, increases the chances of cancerous growth in other parts of the body. In this study, we propose the use of photoacoustic flow cytometry as a diagnostic of patient disease state, by closely monitoring the amount of circulating melanoma cells (CMCs) in a patient’s blood before and after chemotherapy treatments. Using this patient data, we were able to make …


Immunomodulatory Biomaterials For Cancer Immunotherapy, Larry Donnell Stokes Jr May 2021

Immunomodulatory Biomaterials For Cancer Immunotherapy, Larry Donnell Stokes Jr

Honors Theses

Cancer immunotherapy has become an effective treatment in the toolbox of oncologists. Immunotherapy offers a less toxic alternative to standard cancer treatments such as chemotherapy and can have prolonged curative effects to decrease cancer recurrence. Today, many drugs and biological agents have been developed that target the immune system and elicit an antitumor/cancer response. These agents are known collectively as cancer immunotherapies. While immunotherapies have radically improved treatment outcomes for many cancer patients, there are drawbacks to using these treatments. Immunotherapy treatments have poor clinical responses in patients with tumors that lack immunogenicity. Some of the treatments also pose a …


Analyzing The Effects Of E-Hook Peptides On Kinesin-1, Ashton Ward Murrah, Baylee Hope Howard May 2021

Analyzing The Effects Of E-Hook Peptides On Kinesin-1, Ashton Ward Murrah, Baylee Hope Howard

Honors Theses

Cancer is the second leading cause of death in the United States. Cancerous growth is a result of oncogenes, or mutated genes that increase the rate of cell division in an uncontrolled manner. Cell division, which consists of mitosis and cytokinesis phases, is dependent upon the active movement of kinesin motor proteins along microtubules to rearrange the cytoskeleton for equitable distribution of genetic material to daughter cells. As kinesins are vital to this process, if we could prevent kinesin from binding to the microtubules, cell division would cease.

The goal of this study is to develop a method to prevent …


Elucidating Mechanisms Of Metastasis With Implantable Biomaterial Niches, Ryan Adam Carpenter Jul 2020

Elucidating Mechanisms Of Metastasis With Implantable Biomaterial Niches, Ryan Adam Carpenter

Doctoral Dissertations

Metastasis is the leading cause of cancer related deaths, yet it remains the most poorly understood aspect of tumor biology. This can be attributed to the lack of relevant experimental models that can recapitulate the complex and lengthy progression of metastatic relapse observed in patients. Mouse models have been widely used to study cancer, however they are critically limited to study metastasis. Most models generate aggressive metastases in the lung without the use of unique cell lines or specialized injection techniques. This limits the ability to study disseminated tumor cells (DTCs) in other relevant metastasis prone tissues. Prolonged observation of …


Cis-Resveratrol Upregulates Tyrosyl-Trna Synthetase And Inhibits The Proliferation Of Select Breast Cancer Cell Lines, Marion Cone Hope Iii Jul 2020

Cis-Resveratrol Upregulates Tyrosyl-Trna Synthetase And Inhibits The Proliferation Of Select Breast Cancer Cell Lines, Marion Cone Hope Iii

Theses and Dissertations

Breast cancer is one of the most commonly occurring cancers in women. 70% of breast cancer patients express ERα and are treated with tamoxifen (Tam), a drug that is used to directly target ERα. However, 20-30% of cancer patients develop a resistance to Tam. This resistance leads to a worse prognosis and other treatments such as DNA damaging drugs or radiation to eliminate these cells. Resveratrol (RSV) is a polyphenolic- compound found in plants such as grapes and hellebore and is known to evoke anti-cancer effects. While natural resveratrol exists as a mixture of both cis- and trans- isomers, so …


The Use Of Natural Anthraquinone Emodin As A Primary And Complementary Therapeutic In The Treatment Of Colorectal Cancer, Alexander-Jacques Theodore Sougiannis Apr 2020

The Use Of Natural Anthraquinone Emodin As A Primary And Complementary Therapeutic In The Treatment Of Colorectal Cancer, Alexander-Jacques Theodore Sougiannis

Theses and Dissertations

5 Fluorouracil (5FU) chemotherapy is widely used in the treatment of colorectal cancer (CRC), and has been the first-choice chemotherapy drug for CRC for many years. However, nearly 10% of patients receiving chemotherapy die during the first 30 days of treatment. Further, it is estimated that 70% of surviving patients will develop non-specific toxicities as a result of chemotherapy treatment. We characterize these toxicities in an animal model of chemotherapy treatment and show that perturbations in the gut microbiome might be exacerbate the prolonged effects of chemotherapy. A compound that could attenuate the multiple non-selective toxicities associated with chemotherapy could …


Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin Jan 2020

Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin

Doctoral Dissertations

“The current treatment methods in cancer are associated with toxicity in healthy tissues, partial therapeutic response, drug resistance and finally recurrence of the disease. The cancer drugs are challenged by non-specific binding, undesired toxicity in healthy cells, low therapeutic index and finally poor therapeutic outcome. In this work, a targeted nanoscale therapeutic system Antibody Drug Nanoparticle (ADN) was engineered to selectively inhibit the breast cancer cell growth with reduced toxicity in healthy cells. The ADNs were designed by synthesizing rod shaped anoparticles using pure chemotherapeutic drug and covalently conjugating a therapeutic monoclonal antibody (mAb) on the surface of the drug …


Enhanced Label Free Normal And Cancer Cells Classification Using Combined Parametric Modeling And Optical Techniques, Ayshathul Fouzia Abdul Gani Jan 2020

Enhanced Label Free Normal And Cancer Cells Classification Using Combined Parametric Modeling And Optical Techniques, Ayshathul Fouzia Abdul Gani

Dissertations

The development of label-free methods for cell classifications has been driven by the importance of early detection and identification of cancer disease. The future point-of-care (POC) treatment methods require rapid and real-time cancer screening techniques. As the labelled methods of cell classification are time-consuming processes and require a large amount of sample preparation along with skilled persons, they do not appear to be suitable for POC treatment methods. This necessitates the importance of such development. The label-free methods incorporate the biophysical properties of cells instead of biomarkers. The optical properties of cells have been frequently utilized for cell classification. This …


Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao Jan 2020

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

The mechanotransduction of cells is the intrinsic ability of cells to convert the mechanical signals provided by the surrounding matrix and other cells into biochemical signals that affect several distinct processes such as tumorigenesis, wound healing, and organ formation. The use of biomaterials as an artificial scaffold for cell attachment, differentiation and proliferation provides a tool to modulate and understand the mechanotransduction pathways, develop better in vitro models and clinical remedies. The effect of topographical cues and stiffness was investigated in fibroblasts using polycaprolactone (PCL)- Polyaniline (PANI) based scaffolds that were fabricated using a self-assembly method and electrospinning. Through this …


In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill Dec 2019

In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill

Graduate Theses and Dissertations

Twist transcription factor is often overexpressed in aggressive tumors. Although needed in early embryonic development for organogenesis, Twist is known to induce an epithelial to mesenchymal transition in cells. In cancer, epithelial to mesenchymal transitions can lead to increased motility and invasiveness. It has also been linked to metabolic reprogramming and increased metastatic risk. Furthermore, metabolic preferences can increase proliferation, enhance metastatic potential, and influence the site of metastasis. We hypothesize that Twist directly affects the metabolism of cancer cells. We expect to see in vivo what we have seen in vitro; Twist overexpression should promote a shift away from …


Mechanosensitive Epithelial Cell Scattering And Migration On Layered Matrices, Christopher Michael Walter Aug 2019

Mechanosensitive Epithelial Cell Scattering And Migration On Layered Matrices, Christopher Michael Walter

McKelvey School of Engineering Theses & Dissertations

Epithelial cells form multi-layered tissue scaffolding that makes up every organ in the body. Along with epithelial cells, the basement membrane (BM) and connective tissue are composed of various proteins that sculpt the organs and protect them from foreign macromolecules. Epithelial cells respond to various cues, both chemical and mechanical, from their surrounding matrices to aid in maintenance and repair of these layers through degradation and deposition of extracellular matrix (ECM) proteins. In cancer progression, epithelial cells lose their normal function of supporting tissue structure and instead adopt more aggressive behaviors through an epithelial-to-mesenchymal transition (EMT) of their cellular traits. …


Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott Jan 2019

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott

Theses and Dissertations--Chemical and Materials Engineering

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to develop …


Impedance Sensing Of Cancer Cells Directly On Sensory Bioscaffolds Of Bioceramics Nanofibers, Hanan Alismail Dec 2018

Impedance Sensing Of Cancer Cells Directly On Sensory Bioscaffolds Of Bioceramics Nanofibers, Hanan Alismail

Graduate Theses and Dissertations

Cancer cell research has been growing for decades. In the field of cancer pathology, there is an increasing and long-unmet need to develop a new technology for low-cost, rapid, sensitive, selective, label-free (i.e. direct), simple and reliable screening, diagnosis, and monitoring of live cancer and normal cells in same shape and size from the same anatomic region. For the first time on using an impedance signal, the breast cancer and normal cells have been thus screened, diagnosed and monitored on a smart bioscaffold of entangled nanowires of bioceramics titanate grown directly on the surface of implantable Ti-metal and characterized by …


Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller Aug 2018

Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller

Electronic Theses and Dissertations

The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-medicated drug delivery. This heterogeneity spans from the molecular to the cellular (cell types) and to the tissue (vasculature, extra-cellular matrix) scales. Here we employ computational modeling to evaluate therapeutic response as a function of vascular-induced tumor tissue heterogeneity. Using data with three-layered gold nanoparticles loaded with cisplatin, nanotherapy is simulated with different levels of tissue heterogeneity, and the treatment response is measured in terms of tumor regression. The results show that tumor vascular density non-trivially influences the nanoparticle uptake and washout, and the associated tissue response. The drug …


Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller May 2018

Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller

McKelvey School of Engineering Theses & Dissertations

Optical imaging for medical applications is a growing field, and it has the potential to improve medical outcomes through its increased sensitivity and specificity, lower cost, and small instrumentation footprint as compared to other imaging modalities. The method holds great promise, ranging from direct clinical use as a diagnostic or therapeutic tool, to pre-clinical applications for increased understanding of pathology. Additionally, optical imaging uses non-ionizing radiation which is safe for patients, so it can be used for repeated imaging procedures to monitor therapy, guide treatment, and provide real-time feedback. The versatile features of fluorescence-based optical imaging make it suited for …


A Novel Approach For Cancer Characterization Using Latent Dirichlet Allocation And Disease-Specific Genomic Analysis, Hima Bindu Yalamanchili Jan 2018

A Novel Approach For Cancer Characterization Using Latent Dirichlet Allocation And Disease-Specific Genomic Analysis, Hima Bindu Yalamanchili

Browse all Theses and Dissertations

Two challenging problems in the clinical study of cancer are the characterization of cancer subtypes and the classification of individual patients according to those subtypes. Further, understanding the role of differential gene expression in the development of and molecular response to cancer is a complex problem that remains challenging, in part due to the sheer number of genes and gene products involved. Traditional statistical approaches addressing these problems are hindered by within-class heterogeneity and challenges inherent in data integration across high-dimensional data. In addition, many current machine learning methods do not lend themselves to biological interpretation. We have developed a …


Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson Aug 2017

Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson

McKelvey School of Engineering Theses & Dissertations

Despite enormous efforts, cancer remains a leading cause of morbidity and mortality world-wide. The main challenges currently facing cancer therapy include lack of adequate tumor targeting, failure to treat hypoxic tumor cells, and induction therapy resistant tumors. A solution to these limitations can be found in photodynamic therapy (PDT) which combines light and light activatable compounds, photosensitizers (PSs), to produce cytotoxic reactive oxygen species (ROS) to damage tumor tissue. This creates a spatiotemporal therapeutic effect, where cell damage only occurs at the intersection of the PS and light. PDT can treat tumors through unique mechanisms which reduce induction of tumor …


High Throughput Analysis Of The Penetration Of Iron Oxide/Polyethylene Glycol Nanoparticles Into Multicellular Breast Cancer Tumor Spheroids, Jonathan Robert Gabriel Jul 2017

High Throughput Analysis Of The Penetration Of Iron Oxide/Polyethylene Glycol Nanoparticles Into Multicellular Breast Cancer Tumor Spheroids, Jonathan Robert Gabriel

Theses and Dissertations

The purpose of this study was to design and optimize a system for the high-throughput analysis of multicellular tumor spheroids (MCTS), and validate the system through the study of a complex biological model. The system was successfully created and optimized, allowing the histological recovery of MCTS at rates up to 90% for microarrays of 24-spheroids. Arrays of 96-spheroids were recovered at rates up to 86%. The system was used to study the penetration of 5k Da-polyethylene coated superparamagnetic iron-oxide nanoparticles (5k-PEG SPIONs) into HTB-126 breast cancer spheroids cultured to a mean diameter of 486 micrometer (± 25.2 micrometer). Results were …