Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall Jun 2022

The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall

Doctoral Dissertations

Fluid flow in the cardiovascular and lymphatic systems influences the phenotype of endothelial cells that line the interior to the vessel via mechanotransduction. Geometric features in a vessel such as curvature, bifurcation, and valves promote heterogeneous fluid flow profiles, inducing a heterogeneous endothelial phenotype within a vessel region. Certain flow conditions are associated with vascular dysfunction, and diseases such as atherosclerosis preferentially develop in areas of flow disturbance. Lymphatic vessels are highly analogous to blood vessels, although lymphatic flow characteristics and its effect on lymphatic endothelial cells (LECs) via mechanotransduction have been comparatively less examined. The most significant geometric features …


Manual Material Handling Lift-Assist System For Occupational Exoskeleton, Erik Goes, Daniel Guthrie, Trevor Ward May 2022

Manual Material Handling Lift-Assist System For Occupational Exoskeleton, Erik Goes, Daniel Guthrie, Trevor Ward

Honors Capstones

It is no secret that lifting heavy objects is one of the premier causes of workplace injury, and the modern worker needs help to remain healthy. Workers need something they always have with them that makes their work safer as well as easier; our solution is an active lift-assist exoskeleton. The proposed exoskeleton design includes a military backpack exoskeleton frame, on which two actuators pull cables attached to end effectors that the operator will be holding. This system can adjust to conform to a wide variety of operator sizes, without restricting any of their range of motion. This leads to …


Designing And Investigating A Novel Biodegradable-Nontoxic Mg-Mn-Zn-Na-K Alloying System, Murtatha Mohammed Jamel Dec 2020

Designing And Investigating A Novel Biodegradable-Nontoxic Mg-Mn-Zn-Na-K Alloying System, Murtatha Mohammed Jamel

Theses and Dissertations

Magnesium has been studied extensively due to the promising potential of using magnesium alloys in different applications, especially for biomedical implantation devices and other medical applications. This growing interest is due to the abundance of magnesium metal in the Earth's crust, as well as the fact that magnesium is 37% less dense than aluminum, has good mechanical properties, and is a nontoxic element with good biocompatibility. However, most Mg-based alloys contain alloying elements that are added to improve the mechanical properties but have toxic characteristics. At the same time a number of these alloys are still used in medical applications. …


Pediatric Blood Calculator, Richard Desatnik Jan 2020

Pediatric Blood Calculator, Richard Desatnik

Williams Honors College, Honors Research Projects

This paper outlines an expert system based solution for calculating the optimal amount of blood draw from infants to carry out critical tests requested by the attending clinicians. The solution is a hand-held device with a user-friendly interface that allows a meaningful two-way conversation between the clinician and the pathology office. Based on the tests being requested, the calculator determines the minimum amount of blood required in the different vials based on a smart expert system. This removes the uncertainty that is prevalent today in the amount of blood required to do all the tests, since in some cases there …


The Tera Multi Terrain Mobility Aid Chassis, Colton Kemp, Daniel Nicoll, Ibrahim Suleiman, Mohammad Alyami Jan 2020

The Tera Multi Terrain Mobility Aid Chassis, Colton Kemp, Daniel Nicoll, Ibrahim Suleiman, Mohammad Alyami

Williams Honors College, Honors Research Projects

The natural environment poses a significant number of obstacles and dynamic settings that makes mobility difficult for those with physical and mobility impairments. To approach this problem, a suspension was designed using inspiration from the early Mars rovers developed by NASA for traversing the varied Martian landscape. The course of the project followed the direction of a start-up through problem identification, early design generation and review, and final design production. The project outcome, through client request and proven market research, aimed to produce a multi-terrain wheelchair. The final product is a kinematic body with mobile front “legs” and a rotational …


Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros Jan 2018

Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros

ETD Archive

In metallurgy, Titanium has been a staple for biomedical purposes. Its low toxicity and alloying versatility make it an attractive choice for medical applications. However, studies have shown the difference in elastic modulus between Titanium alloys (116 GPa) and human bone (40-60 GPa) contribute to long term issues with loose hardware fixation. Additionally, long term studies have shown elements such as Vanadium and Aluminum, which are commonly used in Ti-6Al-4V biomedical alloys, have been linked to neurodegenerative diseases like Alzheimers and Parkinsons. Alternative metals known to be less toxic are being explored as replacements for alloying elements in Titanium alloys. …


Fiber Optic Bandage, Logan Mcneil May 2015

Fiber Optic Bandage, Logan Mcneil

Chancellor’s Honors Program Projects

No abstract provided.


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while …