Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2021

Nanoparticles

Discipline
Institution
Publication
File Type

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


Fine Points For Broad Bumps: The Extension Of Rietveld Refinement For Benchtop Powder Xrd Analysis Of Ultra-Small Supported Nanoparticles, Jeremiah W. Lipp Oct 2021

Fine Points For Broad Bumps: The Extension Of Rietveld Refinement For Benchtop Powder Xrd Analysis Of Ultra-Small Supported Nanoparticles, Jeremiah W. Lipp

Theses and Dissertations

The goal of this work is to demonstrate the capabilities of benchtop Bragg diffraction in characterizing ultra-small (< 2nm) nanoparticles. To this end we have established a method for accurately separating the background, adjusting for relevant intensity effects, and analyzing the results with Rietveld refinement. This method is applied to the characterization of six silica-supported “noble” metals under ambient conditions: Pt, Pd, Ir, Rh, Ru, and Au. Surprisingly, Bragg diffraction is capable of shining light on this difficult-to-characterize size region – revealing the propensity of these metal nanoparticles to oxidize at room temperature. Preliminary findings for future work are also discussed: extending our method to crystalline supports and fluorescent samples.


Amorphous Silica Based Biomaterials For Musculoskeletal Tissue Regeneration Applications, Kamal Awad Aug 2021

Amorphous Silica Based Biomaterials For Musculoskeletal Tissue Regeneration Applications, Kamal Awad

Material Science and Engineering Dissertations

Musculoskeletal (MSK) injury includes any injuries that affect the bones, muscles, ligaments, tendons, or nerves. Open bone fracture is one of the common types of MSK traumatic injuries which results in not only bone fracture but also damage/loss of associated muscles, nerve, vasculature, endothelium, periosteum, fascia, and connective tissue. Surgical procedures and biological interventions are required to fix the broken bone, and muscle transfer is performed to compensate the skeletal muscle defects. Current treatments include fixative metal implants and regenerative biopolymer scaffolds, then muscle flap procedures to cover the bone. Yet, these treatments are inadequate because the used materials do …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler May 2021

Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler

Mechanical Engineering Undergraduate Honors Theses

The overall goal of this research project is to synthesize iron core, silica capped nanoparticles that, when they are exposed to a particular magnetic field, will react by increasing in temperature and emitting substantial thermal output. They will be injected into the human body for biological benefit by targeted thermal radiation. Once in the human body, ideally, they will be able to target a specific area, and then a magnetic field will be applied to induce thermal output through the process of hyperthermia. As the nanoparticles emit heat, they will mimic the natural bodily behavior seen by way of hyperthermia, …


Analysis Of Photodetector Based On Zinc Oxide And Cesium Lead Bromide Heterostructure With Interdigital Metallization, Tanveer Ahmed Siddique May 2021

Analysis Of Photodetector Based On Zinc Oxide And Cesium Lead Bromide Heterostructure With Interdigital Metallization, Tanveer Ahmed Siddique

Graduate Theses and Dissertations

In this thesis, photodetector based on the zinc oxide and cesium lead bromide hetero structure were fabricated and characterized. Zinc oxide (ZnO) nanoparticles were synthesized using solution processing and cesium lead bromide (CsPbBr3) thin film was synthesized using two step deposition method. Three phonon modes were obtained by the Raman spectroscopy of ZnO nanoparticles. X-ray diffraction spectra of ZnO exhibits five exciton peaks which denotes that the synthesized ZnO structure was of good crystallinity with wurtzite hexagonal phase. The absorbance spectrum of ZnO shows the bandgap (Eg) in the order of 3.5 eV that aligns with reported results. The photoluminescence …


Study Of Particle Size Effect On The Performance Of Tio2 Nanoparticles As Lubricant Additives On Vegetable Oil-Based Nanolubricants, Dario F. Rodriguez May 2021

Study Of Particle Size Effect On The Performance Of Tio2 Nanoparticles As Lubricant Additives On Vegetable Oil-Based Nanolubricants, Dario F. Rodriguez

Theses and Dissertations

Recently there has been an increase in concern regarding the use of petroleum-based lubricants. This has created an interest in readily available biodegradable lubricants such as vegetable oils. This work evaluates the rheological and tribological performance of grapeseed, and sunflower oils altered with 5, 18, and 40 nanometer titanium dioxide (TiO2) nanoparticles at differing concentrations. Block-on-ring tests were performed using the ASTM G-077-05 standard procedure. The effect of nanoparticle size and concentration and shear rate on the viscosity were evaluated and the experimental data was compared to conventional models. Roughness tests were performed on the wear scar of the blocks …


Analysis Of Data To Evaluate The Performance Of Air Filters Used For Filtering Nanoscale Particles Generated By Smoke, Pascal J. Wagemaker Apr 2021

Analysis Of Data To Evaluate The Performance Of Air Filters Used For Filtering Nanoscale Particles Generated By Smoke, Pascal J. Wagemaker

Honors College Theses

The main goal of this research project is to determine the effectiveness of commercially available air filters and to compare different kinds of commercially available air filters in certain categories. With recent record-breaking wildfires and the Covid-19 pandemic, research on the effects and features of nanoparticles has become increasingly important. Inhalation of nanoparticles in smoke can result in severe health effects on humans, affecting especially the respiratory system. As nanoparticles can pass through cell membranes, absorption occurs rapidly and affects many different parts and functions of the human body. While air filters are an effective method of reducing small-sized particles …


Time-Domain Measurement Of Magnetization Dynamics In Ferrofluids, Brian Egenriether Apr 2021

Time-Domain Measurement Of Magnetization Dynamics In Ferrofluids, Brian Egenriether

Theses and Dissertations

Time-domain measurements are made on a magnetite-based (Fe3O4) ferrofluid using an inductive technique. The constituent particles are 5.8% by volume, polydisperse, and have a nominal diameter of 10nm with a ~1nm-thick anionic hydrophobic coating. The ferrofluid is placed in a sealed channel on a coplanar waveguide (CPW) situated in an adjustable external magnetic bias field. A fast-rising step current in the CPW quickly reorients the local magnetic field above the signal trace causing the particles’ moments to align in the new field configuration. This changing magnetization induces a voltage in the CPW that is detected by a sampling oscilloscope. Precessional …


Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez Jan 2021

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez

LSU Doctoral Dissertations

This research examined the effect of biodegradable, polymeric, lignin-based nanoparticles (LNPs, 113.8±3.4, negatively charged) and zein nanoparticles (ZNP, 141.6±3.9, positively charged) on soybean plant health. The LNPs were synthesized from lignin, covalently linked to poly(lactic-co-glycolic) acid by emulsion evaporation. ZNPs were synthesized by nanoprecipitation. Soybeans grown hydroponically were treated with three concentrations (0.02, 0.2, and 2 mg/ml) of NPs at 28 days after germination. The effect of ZNPs and LNPs on plant health was determined through analysis of root and stem length, chlorophyll concentration, dry biomass of roots and stem, as well as carbon, nitrogen, and micronutrient absorption after 1, …


Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega Jan 2021

Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega

Theses and Dissertations

Trinitrotoluene (TNT) is an explosive commonly used during military and terrorist activities. Current methods to identify this compound require sampling, transport and analysis at a forensic lab using analytical instrumentation. However, on-site detection is needed to assist efforts to prevent detonation. Gold nanoparticles have been used as sensors throughout the years due to their versatility and surface enhanced Raman scattering properties in the presence of an analyte and low limits of detection. By taking advantage of the Meisenheimer complex that TNT forms in the presence of amines, it is possible to determine its presence at picogram levels. Subsequently, adhering amine …


Aqueous Fabrication Of Pristine And Oxide Coated Znse Nanoparticles, Nicholas L. Van Zandt Jan 2021

Aqueous Fabrication Of Pristine And Oxide Coated Znse Nanoparticles, Nicholas L. Van Zandt

Browse all Theses and Dissertations

Semiconducting nanoparticles have received significant attention due to their unique optoelectronic properties. Quantum dots (QDs), a class of spherical nanoparticles, possess a size-dependent bandgap and photoluminescence at visible wavelengths. QDs have many applications including biological labelling, solar cells, chemical impurity detection, and optical glasses. Doping QDs into optical glasses is highly desirable. High-quality QDs can be synthesized via liquid solution methods. However, solution-synthesized QDs often degrade over time and they cannot survive incorporation into a glass melt without protection. In this work, the aqueous synthesis of ZnSe QDs and coating with nanometer silica and alumina protective shells are investigated. The …


Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya Jan 2021

Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya

Graduate Theses and Dissertations

Hydrogen fuel is increasingly seen as an appealing alternative by both the scientific and the industrial communities in the drive towards a clean energy future. Hydrogen, unlike fossil-based fuels, does not release carbon dioxide, a chief component of greenhouse gases, upon combustion. However, more than 95% of the hydrogen in the world is still produced by burning fossil fuels as this method is currently the only economically feasible option at a large industrial scale.

Water electrolysis shows a lot of potential in both hydrogen generation and in the storage of energy from renewable sources such as wind and sunlight. Likewise, …


Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci Jan 2021

Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci

Williams Honors College, Honors Research Projects

Identifying materials to efficiently facilitate the oxygen evolution reaction (OER) is key to advancing water electrolysis, an essential technology in the pathway towards a sustainable energy future. Here, we explore cold-plasma treatment as a facile method to enhance the activity of NiP nanoparticles supported on activated carbon. NiP nanoparticles were synthesized on an activated carbon support using a solid-state method and were then treated with argon, oxygen, and hydrogen plasmas for extended times. In all cases, plasma treatment reduced the number of active sites on the support. OER activity was evaluated by testing the materials in alkaline conditions. The activities …