Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2021

Additive manufacturing

Discipline
Institution
Publication

Articles 1 - 30 of 36

Full-Text Articles in Engineering

Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari Dec 2021

Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari

Electronic Theses and Dissertations

Extrusion-based 3D printing of thermoplastic polymer composites manufactures parts that have nonhomogenous, orthotropic, and process-dependent macro-scale material properties. As a part of the dissertation, research works were carried out to: • improve the interlayer mechanical properties and reduce the orthotropy, • use experimentally homogenized orthotropic material properties to numerically model the mechanical behavior of the non-homogenous orthotropic 3D printed parts, • create an efficient numerical thermal model to predict the process-dependent thermal history of the 3D printed part, and • aid the manufacturing process by selecting a suitable set of processing parameters based on a simplified sequentially coupled thermomechanical model. …


The Impact Of Inkjet Parameters And Environmental Conditions In Binder Jetting Additive Manufacturing, Trenton Miles Colton Dec 2021

The Impact Of Inkjet Parameters And Environmental Conditions In Binder Jetting Additive Manufacturing, Trenton Miles Colton

Theses and Dissertations

Binder jetting is an additive manufacturing process in which a part is fabricated layer-by-layer using inkjet technology to selectively dispense binder into powder layers in a designated area. The approach gives this process significant advantages over other additive manufacturing processes such as lower cost, capability to print in a wide range of materials, and little to no heat applied. Although binder jetting has many advantages and has been successful implemented in various industries its overall rate of adoption is slow compared to other processes. This is largely due to poor mechanical properties and consistency in printing which stems from a …


A Data-Driven Approach For The Investigation Of Microstructural Effects On The Effective Piezoelectric Responses Of Additively Manufactured Triply Periodic Bi-Continuous Piezocomposite, Wenhua Yang Dec 2021

A Data-Driven Approach For The Investigation Of Microstructural Effects On The Effective Piezoelectric Responses Of Additively Manufactured Triply Periodic Bi-Continuous Piezocomposite, Wenhua Yang

Theses and Dissertations

A two-scale model consisting of ceramic grain scale and composite scale are developed to systematically evaluate the effects of microstructures (e.g., residual pores, grain size, texture) and geometry on the piezoelectric responses of the polarized triply periodic bi-continuous (TPC) piezocomposites. These TPC piezocomposites were fabricated by a recently developed additive manufacturing (AM) process named suspension-enclosing projection-stereolithography (SEPS) under different process conditions. In the model, the Fourier spectral iterative perturbation method (FSIPM) and the finite element method will be adopted for the calculation at the grain and composite scale, respectively. On the grain scale, a DL approach based on stacked generative …


Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson Dec 2021

Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson

Doctoral Dissertations

Fused Deposition Modeling (FDM) can be purchased for under five hundred dollars. The availability of these inexpensive systems has created a large hobbyist (or maker) community. For makers, FDM printing is used numerous uses.

With the onset of the COVID-19 pandemic, the needs for Personal Protective Equipment (PPE) skyrocketed. COVID-19 mitigation strategies such as social distancing, businesses closures, and shipping delays created significant supply shortfalls. The maker community stepped in to fill gaps in PPE supplies.

In the case of 3DP, optimization remains the domain of commercial entities. Optimization is, at best, ad-hoc for makers. With the need to PPE …


Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg Dec 2021

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


A Machine Learning Method For The Prediction Of Melt Pool Geometries Created By Laser Powder Bed Fusion, Jonathan Ciaccio Dec 2021

A Machine Learning Method For The Prediction Of Melt Pool Geometries Created By Laser Powder Bed Fusion, Jonathan Ciaccio

University of New Orleans Theses and Dissertations

A machine learning model is created to predict melt pool geometries of Ti-6Al-4V alloy created by the laser powder bed fusion process. Data is collected through an extensive literature survey, using results from both experiments and CFD modeling. The model focuses on five key input parameters that influence melt pool geometries: laser power, scanning speed, spot size, powder density, and powder layer thickness. The two outputs of the model are melt pool width and melt pool depth. The model is trained and tested by using the k fold cross validation technique. Multiple regression models are then applied to find the …


Post-Processing And Characterization Of Additive Manufactured Carbon Fiber Reinforced Semi-Crystalline Polymers, Patricia Revolinsky Dec 2021

Post-Processing And Characterization Of Additive Manufactured Carbon Fiber Reinforced Semi-Crystalline Polymers, Patricia Revolinsky

Mechanical & Aerospace Engineering Theses & Dissertations

The aim of this work is to study the effect of post-processing on additive manufactured (AM) continuous carbon fiber reinforced plastics (CFRPs) performance. As-printed AM CFRPs do not perform as well as conventionally manufactured CFRPs with the same composition. Possible improvements to AM CFRP performance include annealing and applying uniaxial pressure with elevated temperature. Samples were subjected to pressure and temperature treatments and annealing at a constant temperature. Treated materials were subjected to three-point bending tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to characterize and assess sample performance. Results were assessed for flexural strength, …


Additive Manufacturing Using Robotic Manipulators, Fdm, And Aerosol Jet Printers., Alexander Curry Dec 2021

Additive Manufacturing Using Robotic Manipulators, Fdm, And Aerosol Jet Printers., Alexander Curry

Electronic Theses and Dissertations

Additive manufacturing has created countless new opportunities for fabrication of devices in the past few years. Advances in additive manufacturing continue to change the way that many devices are fabricated by simplifying processes and often lowering cost. Fused deposition modeling (FDM) is the most common form of 3D printing. It is a well-developed process that can print various plastic materials into three-dimensional structures. This technology is used in a lot of industries for rapid prototyping and sometimes small batch manufacturing. It is very inexpensive, and a prototype can be created in a few hours, rather than days. This is useful …


Optimized Tip Cooling Using Am Process, Alberto H. Gamez, Lourdes Sarmiento Martinez, Andrew Van Bogelen Dec 2021

Optimized Tip Cooling Using Am Process, Alberto H. Gamez, Lourdes Sarmiento Martinez, Andrew Van Bogelen

Mechanical Engineering

This Final Design Review (FDR) reports on the senior design project undertaken by our team of mechanical engineering seniors at California Polytechnic State University, San Luis Obispo. This project seeks to use the additive manufacturing process to improve the existing design of a Taurus 60 gas turbine injector tip. The current injector tip is owned by Solar Turbines, a designer and manufacturer of gas turbines for electric generation, propulsion, as well as natural resource transportation. The challenge at hand is to design a new injector tip that will be reliable for at least 60,000 hours and provide ease of replacement, …


Selective Laser Melting Of Titanium Diboride: A Study Of The Energy Density Effects, Lazaro Lopez Mendez Dec 2021

Selective Laser Melting Of Titanium Diboride: A Study Of The Energy Density Effects, Lazaro Lopez Mendez

Theses and Dissertations

Natural titanium diboride (TiB2) has been reported the 5th hardest material on earth. Due to its superior properties, such as high density, high elastic modulus, and high compressive strength, TiB2 becomes one of the most suitable ceramic reinforcements for applications with severe friction and heavy loading conditions. This study is intended to produce TiB2 using 3D additive manufacture (AM) technology, and then to understand the tribological property of the AM fabricated TiB2 specimens. In this study, a laser additive alloying (LAA) process was developed based on a Renishaw AM laser system. One mm thick samples were prepared using the LAA …


Micromechanics Of Additively Manufactured Materials Under Dynamic Loading, Christopher Rueben Johnson Oct 2021

Micromechanics Of Additively Manufactured Materials Under Dynamic Loading, Christopher Rueben Johnson

Dissertations (1934 -)

Ongoing works aim to develop a predictive computational framework whichcan be utilized to shorten the design and certification cycle of additively manufactured (AM) 304L stainless steel (SS304L). High fidelity experiments are utilized to validate and parameterize the computational framework. Results have detailed differing mechanical responses across a breadth of strain rates for wrought and AM SS304L. Differences are attributed to the microstructural properties resulting from the fabrication and treatment of the materials. This work aims to supplement preexisting high strain rate compressive strength experimental data sets to further quantify process-structure-property (PSP) relationships in development of the computational framework. Materials investigated …


3d Printed Concrete & Polymer Concrete For Infrastructure Applications, Daniel Heras Murcia Sep 2021

3d Printed Concrete & Polymer Concrete For Infrastructure Applications, Daniel Heras Murcia

Civil Engineering ETDs

Additive manufacturing technology has been established as one of the fastest-growing building technologies worldwide. Three-dimensional concrete printing (3DCP) has developed an increasing interest in the last decade due to its prospects as a transformative technology for industries such as the concrete precast. Besides the improvements in automation technologies in construction, traditional construction has faced considerable challenges: high accident rates, labor dependency, significant potential for automation, and high costs associated with the use of traditional formwork. In this context, three-dimensional concrete, also referred to as physical prototyping, is a novel construction technique in which the concrete is extruded layer-to-layer. 3DCP is …


Evaluation Of Additively Manufactured Lattices Under High Strain Rate Impact, Derek G. Spear Sep 2021

Evaluation Of Additively Manufactured Lattices Under High Strain Rate Impact, Derek G. Spear

Theses and Dissertations

Several additively manufactured lattice designs and configurations were evaluated under compression loads under various strain rates from quasi-static to highly dynamic. These experiments examined how the mechanical behavior of the lattice changed based on the lattice design properties and the applied strain rates. The modulus of elasticity, yield strength, plateau stress, and toughness were observed to decrease with an increase in strain rate, revealing that the lattice designs exhibit a negative strain rate sensitivity. A new lattice flow stress model was developed to account for the mechanical response of the lattice and was incorporated into a computational model for simulation. …


Active Thermography For Additive Manufacturing Processes, Nicholas Jay Wallace Aug 2021

Active Thermography For Additive Manufacturing Processes, Nicholas Jay Wallace

Theses and Dissertations

The goal of the research conducted for this master's thesis is to understand if active thermography is a suitable technique to detect (identify) and measure (approximate depth and or size) defects in additive manufacturing (AM) processes. Although other non-destructive measurement techniques exist, active thermography is an attractive option for AM applications because of the short measurement times that could be implemented between each layer of a print, and because of the relatively inexpensive equipment required. However, pulse thermography is typically applied to detect larger defects (>1 mm) in materials with high thermal conductivity. It was uncertain if active thermography …


Feasibility And Impact Of Liquid/Liquid-Encased Dopants As Method Of Composition Control In Laser Powder Bed Fusion, Taylor Matthew Davis Aug 2021

Feasibility And Impact Of Liquid/Liquid-Encased Dopants As Method Of Composition Control In Laser Powder Bed Fusion, Taylor Matthew Davis

Theses and Dissertations

Additive manufacturing (AM) – and laser powder bed fusion (LPBF) specifically – constructs geometry that would not be possible using standard manufacturing techniques. This geometric versatility allows integration of multiple components into a single part. While this practice can reduce weight and part count, there are also serious drawbacks. One is that the LPBF process can only build parts with a single material. This limitation generally results in over-designing some areas of the part to compensate for the compromise in material choice. Over-designing can lead to decreased functional efficiency, increased weight, etc. in LPBF parts. Methods to control the material …


Investigation Of Different Hatch Strategies On High Entropy Alloy Fabrication By Selective Laser Melting, Joni Chandra Dhar Aug 2021

Investigation Of Different Hatch Strategies On High Entropy Alloy Fabrication By Selective Laser Melting, Joni Chandra Dhar

Theses and Dissertations

This study investigated the synthesis of CuCrFeNiTiAl high entropy alloy (HEA) from pure elements using selective laser melting (SLM). The objectives are to validate the feasibility of the HEA fabrication from elemental powder materials, and to examine the effect of various hatch strategies and energy densities on the microstructures and other materials properties. 3D samples of CuCrFeNiTiAl alloy were fabricated under different energy densities and with different scan vector lengths. The as-built samples were characterized by X-ray diffraction (XRD), and the microstructures were observed using scanning electron microscopy (SEM). The XRD results showed that face centered cubic, and body centered …


Phase Change Temperature Sensor For High Radiation Environment: Material, Additive Technology And Structure Development, Al Amin Ahmed Simon Aug 2021

Phase Change Temperature Sensor For High Radiation Environment: Material, Additive Technology And Structure Development, Al Amin Ahmed Simon

Boise State University Theses and Dissertations

Performance of any sensor in a nuclear reactor involves reliable operation under a harsh environment (i.e., high temperature, neutron irradiation, and a high dose of ionizing radiation). In this environment, accurate and continuous monitoring of temperature is critical for the reactor's stability and proper functionality. Furthermore, during the development and testing stages of new materials and structural components for these systems, it is imperative to collect in-situ measurement data about the exact test conditions for real-time analysis of their performance. To meet the compelling need of such sensing devices, we propose radiation-hard temperature sensors based on the phase change phenomenon …


Optimization Of 3d Printed Mold Performance For Injection Molding Via Hollow Infill Patterns, Alan Fong Jul 2021

Optimization Of 3d Printed Mold Performance For Injection Molding Via Hollow Infill Patterns, Alan Fong

University Honors Theses

The applicability of hollow infill patterns has been explored for its applications in making 3D printed polymer-based injection molds in the additive manufacturing industry. Hollow infill patterns offer a significant reduction in material costs as well as the opportunity for reducing the cooling times via pumping a coolant fluid through the hollow cavity in a similar fashion to traditional conformal cooling channels. A 3D Jacks Support Hollow mold model was determined to be the best performing design. FEA analysis was conducted to determine the maximum reduction in internal volume (percentage of material saved) that could be achieved without exceeding the …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Design And Fabrication Of Invar Layup Tool Molds Using Additive And Subtractive Manufacturing, Matthew Lamsey May 2021

Design And Fabrication Of Invar Layup Tool Molds Using Additive And Subtractive Manufacturing, Matthew Lamsey

Masters Theses

The development of novel additive manufacturing technologies, such as Wire Arc Additive Manufacturing (WAAM), has opened the door for the fabrication of complex part geometries that could not be achieved with traditional manufacturing methods. Best practices for designing parts for fabrication with WAAM are still in their infancy. This thesis presents a novel design and fabrication framework for parts created using WAAM, which was realized through the fabrication of two demonstration composite layup tool molds. The framework includes design principles for WAAM, finite element simulation of part performance, metrological analysis of printed preforms, and considerations for closely integrating the WAAM …


Development Of Data Science Tools For Part Qualification In Additive Manufacturing, Sujana Chandrasekar May 2021

Development Of Data Science Tools For Part Qualification In Additive Manufacturing, Sujana Chandrasekar

Doctoral Dissertations

In recent years, metal additive manufacturing processes have become popular choices for part production especially for low volume, high complexity parts. To enable widespread adoption of these methods, it is essential to understand the link between process parameters and part properties. This is particularly because additive manufacturing processes cause inherently complex thermo-mechanical cycles and drastically different local process conditions within a part, compared to conventional manufacturing processes like casting and forging. Additionally, properties of feedstock material like metal powder impact final part properties. The focus of this dissertation is on development of data-driven methods using in situ monitoring, as a …


Theory And Application Of Dielectric Rod Antennas And Arrays, Gabriel Saffold Apr 2021

Theory And Application Of Dielectric Rod Antennas And Arrays, Gabriel Saffold

USF Tampa Graduate Theses and Dissertations

Dielectric rods have been used for many years as waveguides and radiators. Their low loss as a transmission line and tendency to radiate at discontinuities have proven useful in applications ranging from fiber optic cables to naval fire control radar. Although this technology is well es- tablished, advances in additive manufacturing techniques and associated materials combined with the ubiquity of wireless communications and their shift to higher frequencies have generated re- newed interest in dielectric rods. Dielectric rod antennas have moderate gain and less conductive loss at higher frequencies. Similar to other surface wave antennas, they can achieve broadband performance.This …


Wind Blade Manufacturing For The Cal Poly Wind Power Club, Benjamin E. Thompson, Jake R. Lund, Claudia C. Angeles Mar 2021

Wind Blade Manufacturing For The Cal Poly Wind Power Club, Benjamin E. Thompson, Jake R. Lund, Claudia C. Angeles

Mechanical Engineering

The Cal Poly Wind Power Club is entering the 2021 Collegiate Wind Competition (CWC) in June. Last year, three senior project teams were assigned to collaborate and assist the club with the pitching mechanism, the rotor balancing, and the manufacturing process. As the manufacturing team, the goal of our project was to design a manufacturing process for the bladegeometry given. The manufacturing process was required to meet the team’s expectations and CWC’s performance requirements to place highly in the competition taking place in June 2021.These expectations included creating a manufacturing process that is repeatable and reliable for future competitions. The …


Improving Manufacturability And Reducing Cracking In Additively Manufactured Tungsten Alloys, Christopher P. Fassio Mar 2021

Improving Manufacturability And Reducing Cracking In Additively Manufactured Tungsten Alloys, Christopher P. Fassio

Theses and Dissertations

Additively Manufactured tungsten suffers from low () densities due to high concentrations of microcracks as the printed layers cool past tungsten's high ductile to brittle transition temperature. In this study, tungsten-rhenium and tungsten rhenium hafnium carbide compositions were evaluated on density and tensile strength. In addition to varying the compositions of each alloy, printing parameters and post-processing methods were also compared. Print parameters varied for all compositions on an MLab 200R C using included the laser scan strategy, hatch spacing, scan speed, laser power, and print bed material. Post processing techniques of the WRe compositions included hot isostatic pressing and …


A Reduced Order Model Of The Celestial Icosahedron As The Substructure For A Lighter Than Air Vehicle, Torin C. Quick Mar 2021

A Reduced Order Model Of The Celestial Icosahedron As The Substructure For A Lighter Than Air Vehicle, Torin C. Quick

Theses and Dissertations

A finite element approach was used to investigate a novel reduced order model to determine the minimum structure dimensionality to support vacuum for a VLTAV. This modeling technique represented the individual segments of the substructure as curved beams with clamped radially-resisted boundary conditions. The full structure was then modeled as a bare structure and structure with skin to validate the results of the reduced order model. The beam geometry for the material Ultem 9085 was determined through this process leading to the 3-D printing of the structure. It was then experimentally tested under uniaxial compression complimented with a FEA model.


Experimental Characterization And Crystal Plasticity Modeling Of Mechanical Properties And Microstructure Evolution Of Additively Manufactured Inconel 718 Superalloy, Saeede Ghorbanpour Jan 2021

Experimental Characterization And Crystal Plasticity Modeling Of Mechanical Properties And Microstructure Evolution Of Additively Manufactured Inconel 718 Superalloy, Saeede Ghorbanpour

Doctoral Dissertations

In this thesis, the mechanical behavior of the additively manufactured (AM) IN718 nickel-based superalloy and their correlations with the evolution of microstructure are studied comprehensively. The effects of manufacturing parameters, build orientations, and post processing procedures, i.e. standard heat treatment and hot isostatic pressing (HIP), on various mechanical properties including monotonic compression and tension strength, low cyclic fatigue performance, high cyclic fatigue behaviour, and fatigue crack growth behavior are investigated. Due to the high temperature applications of the IN718 alloy, elevated temperature properties are examined as well. Electron Backscattered Diffraction (EBSD) technique is employed to measure the initial and deformed …


A Theory-Supported Machine Learning Model For The Prediction Of Melt Pool Geometry And Optimal Process Window In Metal Additive Manufacturing, Sina Tayebati Jan 2021

A Theory-Supported Machine Learning Model For The Prediction Of Melt Pool Geometry And Optimal Process Window In Metal Additive Manufacturing, Sina Tayebati

Graduate Research Theses & Dissertations

Direct Energy Deposition (DED) is an additive manufacturing (AM) process capable of producing complicate-shaped or functionally graded components, and it is getting intense attention as a revolutionary technology to satisfy high demand in manufacturing process for the aerospace, automotive, and medical industries. However, the repeatability in geometries and properties of fabricated products is one of the most challenging issues for the DED process to be fully utilized, requiring comprehensive understanding of effect of processing conditions on the properties of fabricated parts, and development of relations among those conditions and properties. That is the motivation of this research. In this study, …


Fabrication, Characterization Of High-Entropy Alloys And Deep Learning-Based Inspection In Metal Additive Manufacturing, Wenyuan Cui Jan 2021

Fabrication, Characterization Of High-Entropy Alloys And Deep Learning-Based Inspection In Metal Additive Manufacturing, Wenyuan Cui

Doctoral Dissertations

"Alloying has been used to confer desirable properties to materials. It typically involves the addition of small amounts of secondary elements to a primary element. In the past decade, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high- entropy alloys (HEAs) has been in vogue. In the first part, the investigation focused on the fabrication process and property assessment of the additive manufactured HEA to broaden its engineering applications. Additive manufacturing (AM) is based on manufacturing philosophy through the layer-by-layer method and accomplish the near net-shaped components …


Fabrication Of Silicon Nitride Parts By Ceramic On-Demand Extrusion Process, Sachin Choudhary Jan 2021

Fabrication Of Silicon Nitride Parts By Ceramic On-Demand Extrusion Process, Sachin Choudhary

Masters Theses

“Ceramic On-Demand Extrusion (CODE) is a patented solid freeform fabrication method for manufacturing high-density monolithic ceramic parts. In the past 5-6 years, the technology has been successfully implemented to fabricate alumina and zirconia parts. The mechanical characterizations also show CODE’s high potential in achieving desired structural properties. The present study covers the fabrication of silicon nitride parts by CODE process, which entailed the design of paste formulation for achieving rheology suitable for dimensional control in fabricated parts and determining firing temperature and the content of sintering additives for silicon nitride green bodies fabricated by CODE. The density, hardness, and fracture …