Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Conversion From Metal Oxide To Mof Thin Films As A Platform Of Chemical Sensing, Meng Chen Nov 2020

Conversion From Metal Oxide To Mof Thin Films As A Platform Of Chemical Sensing, Meng Chen

USF Tampa Graduate Theses and Dissertations

Chemical sensor is working as a widely used device which can be applied to the detection of specific chemicals that are existing in the environment especially in gas phase. The detection of combustible and toxic chemicals can be extremely important in the field of both industrial and civil activities. The chemical sensor is commonly operating by utilizing a chemical or physical interaction between the specific chemical compound and the sensing functional unit, to obtain an electronic signal caused by the property change and realize the chemical detection. Traditional chemical gas sensors such as catalytic gas sensor, thermal conductivity gas sensor, …


Tuning Degradation And Cell Adhesion In Next Generation Resorbable Implants, Ufuomaroghene Ikoba Nov 2020

Tuning Degradation And Cell Adhesion In Next Generation Resorbable Implants, Ufuomaroghene Ikoba

USF Tampa Graduate Theses and Dissertations

Osteoarthritic and bone degenerative diseases are expected to grow immensely as the aging population, 65 years and older increases. Orthopedic implants are one sub-class of medical devices that are used to treat bone breaks and fractures. Traditionally, internal fixation implants are manufactured using titanium or stainless steel. Magnesium, a bioresorbable and biodegradable material, has been proposed as an alternative to titanium and stainless steel. The goal of this research is to control the degradation behavior of magnesium implants by developing crystallized thin poly(lactic acid) copolymer films as protective coatings. To do this, this work was divided into two aims. Aim …


Laser-Induced Modifications In Two-Dimensional Materials, Tariq Afaneh Nov 2020

Laser-Induced Modifications In Two-Dimensional Materials, Tariq Afaneh

USF Tampa Graduate Theses and Dissertations

Atomically thin two-dimensional (2D) materials have attracted a growing interest in the lastdecade from the fundamental point of view as well as their potential applications in functional devices. Due to their high surface-to-volume ratio, the physical properties of 2D materials are very sensitive to the environmental factor such as surrounding media and illumination conditions (e.g. light-mater interaction). In the first part of this dissertation I will present recent advances in developing laser-assisted methods to tune the physical properties of 2D transition metal dichalcogenides (TMDs). We demonstrate laser-assisted chemical modification ultrathin TMDs, locally replacing selenium by sulfur atoms. The photo-conversion process …


Sustainable Non-Noble Metal Based Catalysts For High Performance Oxygen Electrocatalysis, Swetha Ramani Nov 2020

Sustainable Non-Noble Metal Based Catalysts For High Performance Oxygen Electrocatalysis, Swetha Ramani

USF Tampa Graduate Theses and Dissertations

Current energy crisis has dramatically shifted the focus of technological advancements towards clean and renewable forms of energy. Continued dependence and utilization of fossil fuels has created global awareness on harmful greenhouse gas emissions and climate change. A need for sustainable technology has gained a lot of significance in the recent years. This has led to the development of devices and technologies that rely on environmentally friendly electrochemical conversion and storage of energy. One such advancement that generates electrical energy from chemical reactions is known as fuel cell technology. While fuel cells have demonstrated potential in replacing the conventional technologies …


Van Der Waals Epitaxy Of Ultrathin Early Transition Metal (Ti & V) (Di)Selenides: Charge And Magnetic Order In The Ultrathin Limit, Manuel Bonilla Lopez Jun 2020

Van Der Waals Epitaxy Of Ultrathin Early Transition Metal (Ti & V) (Di)Selenides: Charge And Magnetic Order In The Ultrathin Limit, Manuel Bonilla Lopez

USF Tampa Graduate Theses and Dissertations

Since the isolation of graphene in 2004, two-dimensional (2D) layered materials, specially the transition metal dichalcogenides (TMDs), have attracted immense interest from theoreticians and experimentalist due to the diversity of properties presented in this family of materials. The main reason for the interest in such materials has been the observation of emergent properties as a consequence of the reduced dimensions, i.e. the monolayer regime. Initially the monolayer regime was obtained via the scotch-tape method. The implementation of exfoliation techniques was successful since layered 2D materials are composed of stacked layers held together by weak van der Walls forces that permits …


Additive Manufactured And Laser Enhanced Optical Fiber On Flexible Kapton Substrate, Dianhao Hou Jun 2020

Additive Manufactured And Laser Enhanced Optical Fiber On Flexible Kapton Substrate, Dianhao Hou

USF Tampa Graduate Theses and Dissertations

This thesis mainly focuses on the realization of laser enhancing additive manufactured optical fibers on the flexible substrate based on previous work on the rigid surface, and the exploration of their loss at different bend status by optical transmission test. Optical fibers are successfully fabricated using polymethyl methacrylate by fused deposition modeling technology within Norland Optical Adhesive 1369 which is chosen as the cladding material and micro-dispensed on the Kapton substrate. The Laser cutting technology and scanning electron microscope have been used to enhance and characterize the flatness of two end facets of samples, respectively. The optical adhesive and PMMA …


Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang Jun 2020

Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang

USF Tampa Graduate Theses and Dissertations

This thesis includes data and discussion about the technique of metal-enhanced fluorescence (MEF) to lower the detection limit of carcinoembryonic antigen (CEA). The detection limit goes down to 100pg/mL level when using MEF substrate made by rapid thermally annealed silver film covered by silica, which has great promise in diagnosing certain types of cancer that uses CEA as detection biomarker, such as pancreatic cancer and colon cancer. To further address the issue of background noises from non-specifically bound proteins (NSB) in complex media, such as plasma, serum, urine and blood, MEF is integrated with surface acoustic wave (SAW) streaming in …


Laser Micropatterning Effects On Corrosion Resistance Of Pure Magnesium Surfaces, Yahya Efe Yayoglu Apr 2020

Laser Micropatterning Effects On Corrosion Resistance Of Pure Magnesium Surfaces, Yahya Efe Yayoglu

USF Tampa Graduate Theses and Dissertations

Magnesium and its alloys are good candidates to manufacture medical implants. They have excellent biocompatibility and because they biodegrade secondary surgical operation to remove the implant could be eliminated. However, in aqueous environments, magnesium alloys rapidly corrode, resulting in premature degradation of the implant along with biologically intolerable hydrogen gas generation. In literature, there are multiple studies focused on creating water repelling hydrophobic magnesium surfaces in order to decrease corrosion rates. Hydrophobic properties can be achieved by creation of a roughness profile on an initially smooth surface combined with a treatment that reduces the free surface energy. In theory, hydrophobic …


Growth And Characterization Of 2d Layered Materials, Algene Fryer Ii Apr 2020

Growth And Characterization Of 2d Layered Materials, Algene Fryer Ii

USF Tampa Graduate Theses and Dissertations

2D layered materials are becoming an important area of research due to their exceptional electrical and optical properties. Specifically, 2D layered monochalcogenides are known for their high carrier motilities, whereas layered metal halides have been shown to have noteworthy photoresponsivity. Despite the assortment of 2D layered materials, the search for reliable and scalable synthesis methods is still a challenge in this family of materials. Often a certain growth technique will compromise a desirable trait needed for further fabrication, such as the quality of the crystal or its coverage on a substrate. In this study, two growth techniques that incorporate changeable …


Influence Of Glass Fiber Reinforced Polymer Wraps On Corrosion Progression Of Bridge Piles In Marine Environments, Shayan Yazdani Mar 2020

Influence Of Glass Fiber Reinforced Polymer Wraps On Corrosion Progression Of Bridge Piles In Marine Environments, Shayan Yazdani

USF Tampa Graduate Theses and Dissertations

The Friendship Trail Bridge connecting Tampa to St. Petersburg was demolished in 2016. Thirteen 20 inches. by 20 inches. reinforced concrete piles supporting its superstructure were part of research studies conducted between 2004 and 2008 to explore the role of glass fiber reinforced polymers (GFRP) in corrosion repair. During demolition, piles were typically cut at the pile cap and in the splash zone. The resulting segments varied in length between 3 to 4 ft. These remnants were transported to the University of South Florida (USF) campus for postmortem analysis. The overarching goal was to establish the role of GFRP in …


Low-Grade Kaolin Clay Natural Resource For Use As A Supplementary Cementitious Material In Structural Concrete Elements, Brandon X. Lorentz Feb 2020

Low-Grade Kaolin Clay Natural Resource For Use As A Supplementary Cementitious Material In Structural Concrete Elements, Brandon X. Lorentz

USF Tampa Graduate Theses and Dissertations

At the turn of the century, low-grade kaolin clay (LGK) was presented as a widely available and potential natural resource of supplementary cementitious materials (SCM) for producing high performance concretes. In using LGK as an SCM, clinker production is reduced, aiding environmental concerns with associated CO2 emissions. These types of clays have very heterogeneous mineralogy and microstructural characteristics, causing unique influences on concrete structural and flow performance, although these influences are not well understood. This research studies LGK natural to the state of Florida and assesses their potential use as high performance SCM.

Ten kaolin clays were obtained through a …