Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Effect Of Underfill Material & Gap Height On Reliability Of Low-K Large-Die Flip Chip Package Under Thermal Loading, Paul Crisanth Dec 2017

Effect Of Underfill Material & Gap Height On Reliability Of Low-K Large-Die Flip Chip Package Under Thermal Loading, Paul Crisanth

Mechanical and Aerospace Engineering Theses

The reliability assessment of package assembly is important to predict the performance of any microelectronic devices. Formation of fatigue cracks at the interface between the solder joint and component is the common failure occurring in widely used microelectronic devices. Lead-free solders and advanced silicon process nodes with the low-k dielectrics flip chip package are used and are facing significant reliability challenges. The mismatch of coefficient of thermal expansion (CTE) between the chip and substrate affect solder joint reliability. The underfill encapsulant packaging is widely used to improve chip device reliability. In this paper, we are studying the effect of different …


A Design Methodology For Continuous Fiber Additive Manufacturing Using Advanced Computer Aided Engineering Techniques, Nicholas Venter Dec 2017

A Design Methodology For Continuous Fiber Additive Manufacturing Using Advanced Computer Aided Engineering Techniques, Nicholas Venter

Mechanical and Aerospace Engineering Theses

A design methodology for Continuous Carbon Fiber Additive Manufacturing (CCFAM) developed using Computer Aided Engineering (CAE) techniques takes advantage of both the mechanical strength of composite materials and the Fused Filament Fabrication (FFF) method. By performing topology optimization and Finite Element Analysis (FEA) on a load-bearing part, engineers can design much lighter optimized parts that are just as strong as those produced using FFF. This weight reduction is achieved by relying on the mechanical strength of continuous carbon fibers printed alongside a traditional thermoplastic matrix. The FFF additive manufacturing method enables the production of complex shapes, which can match the …


Design Of Telescopic Beams Based On Parametric Studies Using Fea And Statistical Optimization, Neha Arieckal Jacob Nov 2017

Design Of Telescopic Beams Based On Parametric Studies Using Fea And Statistical Optimization, Neha Arieckal Jacob

Philosophy Dissertations

This dissertation describes an investigation on the behavior of the overlap area in telescopic cantilevers under tip loads. The main aim of this research is to address the question of ‘how the overlap region of a telescopic beam behaves under a tip load’ and to develop a new generic approach to the design of telescopic beams based on parametric studies using FEA and statistical optimization. Experimental investigations and exploratory analyses were carried out to study the behavior of RHS (Rectangular Hollow Section) rings and RHS pieces. Based on these observations, theoretical explanations were developed and a methodology for the design …


Bmi, Tumor Lesion And Probability Of Femur Fracture: A Probabilistic Biomechanics Approach, Zhi Gao Oct 2017

Bmi, Tumor Lesion And Probability Of Femur Fracture: A Probabilistic Biomechanics Approach, Zhi Gao

Masters Theses

found that most of these factors are directly or indirectly linked to subjects’ BMI (body mass index). Thus, from a statistical perspective, BMI could be an overall indicator of the probability of femur fracture from a sideways fall. Using a biomechanics approach coupled with statistical data we investigate this relationship with a large cohort of postmenopausal women aged 50-79 from WHI-OS (Women’s Health Initiative Observational Cohort). The cohort is divided into six sub-cohorts by BMI where each fall-related factor is examined and compared with each other. Significant differences are discovered among cohorts in terms of femur size, aBMD (areal bone …


Evaluation Of Concrete Constitutive Models For Impact Simulations, Guillermo A. Mata Jun 2017

Evaluation Of Concrete Constitutive Models For Impact Simulations, Guillermo A. Mata

Mechanical Engineering ETDs

The research documented in this thesis deals with computational analysis of reinforced concrete impacted by both hollow and solid missiles as a continuing effort on the work conducted by the Committee on the Safety of Nuclear Installations (CSNI) and Nuclear Energy Agency (NEA). The analysis focuses on comparing two similar material models and their ability to capture the mechanistic response of a reinforced concrete slab subjected to impact loads. The analysis was performed using the Sandia National Laboratories computing software SIERRA Solid Mechanics to run the finite element model. The two constitutive models studied were the Holmquist-Johnson-Cook and Johnson-Holmquist 2 …


Comparison Of Mechanical Behaviour Of Metallic And Composite Front Door Of A Standard Automobile Car By Fea, Aniket Chandu Thosar May 2017

Comparison Of Mechanical Behaviour Of Metallic And Composite Front Door Of A Standard Automobile Car By Fea, Aniket Chandu Thosar

Mechanical and Aerospace Engineering Theses

With the advent of technology, materials have advanced many folds; one such technical revelation has been Fiber-reinforced Composite Materials. Composite materials have two major advantages, among many others: improved strength and stiffness, especially compared to other materials on a unit weight basis and low density with ease of manufacturing. These advantages have led to new aeronautical, automobile and marine designs that are radical departures from past efforts based on conventional materials. This paper focusses on a comparative study between Aluminum Alloys, Manganese alloys, structural steel, Composite materials and investigates the static and dynamic behaviors for a composite front door of …


A New Centering Table For Encapsulated Glass Positioning, Chongyang Li Jan 2017

A New Centering Table For Encapsulated Glass Positioning, Chongyang Li

Wayne State University Theses

With the progress of the society, people`s living standard is increasing. More and more cars (more than 72 million) are produced and utilized all over the world. This makes a large number of quarter windows which located on the back-side window of a vehicle are urgently needed. Encapsulated glass is widely adopted for a quarter window for various advantages. Positioning by centering table is one of the most important procedures during the fabrication of encapsulated glass for the quarter window. The existing centering table has a lot of disadvantages such as poor flexibility and precision, which results in failure in …


Bio Inspired Lightweight Composite Material Design For 3d Printing, Kaushik Thiyagarajan Jan 2017

Bio Inspired Lightweight Composite Material Design For 3d Printing, Kaushik Thiyagarajan

Electronic Theses and Dissertations

Lightweight material design is an indispensable subject in product design. The lightweight material design has high strength to weight ratio which becomes a huge attraction and an area of exploration for the researchers as its application is wide and increasing even in every day-to-day product. Lightweight composite material design is achieved by selection of the cellular structure and its optimization. Cellular structure is used as it has wide multifunctional properties in addition to the lightweight characteristics. Applications of light weight cellular structures are wide and is witnessed in all industries from aerospace to automotive, construction to product design. In this …


Fea Analysis And Optimization Of Differential Housing For Fatigue Stresses And Fatigue Test Design To Study Skin Effect In Ductile Iron, Swapnil A. Pandey Jan 2017

Fea Analysis And Optimization Of Differential Housing For Fatigue Stresses And Fatigue Test Design To Study Skin Effect In Ductile Iron, Swapnil A. Pandey

Dissertations, Master's Theses and Master's Reports

Automotive emission standards are getting more stringent day by day and governments worldwide are moving to reduce emissions from automobiles. In this scenario reducing the weight of automobile components becomes an important design objective to reduce emissions. A 10% reduction of weight in the complete automobile leads to 6-8 percent improvement in mileage (Mhapankar 2015). Also, powertrain components make up for approximately 27% of the total automobile weight and thus optimizing the design of components in the powertrain is an important task (Mhapankar 2015). Statistics show that 26% of component failures in automobiles are part of powertrain and 21% of …


Minimizing Run Time Of Finite Element Analyses: Applications In Conformable Cng Tank Modeling, Paul M. Roehm Jan 2017

Minimizing Run Time Of Finite Element Analyses: Applications In Conformable Cng Tank Modeling, Paul M. Roehm

Dissertations, Master's Theses and Master's Reports

REL Inc. has proposed a CNG tank that deviates from typical cylindrical storage methods. The goal of REL working with Michigan Tech is to minimize mass and meet NGV2 safety standards for pressure and drop testing for this tank.

The model has undulated outer surfaces and Schwarz P-surface internal geometry. To accurately mesh this, a small element size is necessary; this creates a model with millions of elements. In explicit analyses, this requires a large amount of computational resources to run.

This report focuses on methods to reduce model run time without reducing accuracy. Methods covered include creating symmetric building …