Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Design, Manufacture, And Structural Dynamic Analysis Of A Biomimetic Insect-Sized Wing For Micro Air Vehicles, Jose Enrique Rubio Dec 2017

Design, Manufacture, And Structural Dynamic Analysis Of A Biomimetic Insect-Sized Wing For Micro Air Vehicles, Jose Enrique Rubio

University of New Orleans Theses and Dissertations

The exceptional flying characteristics of airborne insects motivates the design of biomimetic wing structures that can exhibit a similar structural dynamic behavior. For this purpose, this investigation describes a method for both manufacturing a biomimetic insect-sized wing using the photolithography technique and analyzing its structural dynamic response. The geometry of a crane fly forewing (family Tipulidae) is acquired using a micro-computed tomography scanner. A computer-aided design model is generated from the measurements of the reconstructed scanned model of the insect wing to design the photomasks of the membrane and the venation network required for the photolithography procedure. A composite …


Aerodynamic Centers Of Arbitrary Airfoils, Orrin Dean Pope Dec 2017

Aerodynamic Centers Of Arbitrary Airfoils, Orrin Dean Pope

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The study of designing stable aircraft has been widespread and ongoing since the early days of Orville and Wilbur Wright and their famous Wright Flyer airplane. All aircraft as they fly through the air are subject to minor changes in the forces acting on them. The field of aircraft stability seeks to understand and predict how aircraft will respond to these changes in forces and to design aircraft such that when these forces change the aircraft remains stable. The mathematical equations used to predict aircraft stability rely on knowledge of the location of the aerodynamic center, the point through which …


Aerodynamic Drag On Intermodal Rail Cars, Philip Donovan Kinghorn Jun 2017

Aerodynamic Drag On Intermodal Rail Cars, Philip Donovan Kinghorn

Theses and Dissertations

The freight rail industry is essential to the US infrastructure and there is significant motivation to improve its efficiency. The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between containers that often occurs and the resulting pressure drag resulting from the separated flow that results due to their non-streamlined shape. This thesis reports on research that has been done to characterize the aerodynamic drag on intermodal train builds and allow their builds …


Wing Deflection Analysis Of 3d Printed Wind Tunnel Models, Matthew G. Paul Jun 2017

Wing Deflection Analysis Of 3d Printed Wind Tunnel Models, Matthew G. Paul

Master's Theses

This work investigates the feasibility of producing small scale, low aerodynamic loading wind tunnel models, using FDM 3D printing methods, that are both structurally and aerodynamically representative in the wind tunnel. To verify the applicability of this approach, a 2.07% scale model of the NASA CRM was produced, whose wings were manufacturing using a Finite Deposition Modeling 3D printer. Experimental data was compared to numerical simulations to determine percent difference in wake distribution and wingtip deflection for multiple configurations.

Numerical simulation data taken in the form of CFD and FEA was used to validate data taken in the wind tunnel …


Design And Computational Fluid Dynamics Analysis Of An Idealized Modern Wingsuit, Maria E. Ferguson May 2017

Design And Computational Fluid Dynamics Analysis Of An Idealized Modern Wingsuit, Maria E. Ferguson

McKelvey School of Engineering Theses & Dissertations

The aerodynamics of a modern wingsuit has been the subject of very few detailed scientific studies to date. The prevailing design process remains the dangerous “sew and fly” method, in which designs are tested when they are first flown. This study utilizes Computational Fluid Dynamics (CFD) tools to analyze the flow field and aerodynamics of an idealized wingsuit, which is designed using Computer-Aided Design (CAD) modeling. The 3D CAD software Autodesk Inventor is used to create the wingsuit model, which is designed with a Gottingen 228 airfoil cross-section and a relatively large planform of aspect ratio 1.3. The commercial flow …


Numerical Study Of The Aerodynamics Of Dlr-F6 Wing-Body In Unbounded Flow Field And In Ground Effect, Ning Deng May 2017

Numerical Study Of The Aerodynamics Of Dlr-F6 Wing-Body In Unbounded Flow Field And In Ground Effect, Ning Deng

McKelvey School of Engineering Theses & Dissertations

The main focus of this thesis is on the simulation of flow past a three-dimensional wing-body configuration (DLR-F6) in ground effect; a complex 3D wing-body configuration in ground effect has never been analyzed in the aerodynamics literature to date. For the purpose of validation of the simulation approach, computations are performed for the DLR-F6 wing-body in unbounded flow and are compared with the experimental data. The commercial CFD solver ANSYS FLUENT is employed for computations. Compressible Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with Spalart-Allmaras (SA) and - Shear Stress Transport (SST) turbulence models are solved. The validated code is employed …


An Experimental Study On Drag Reduction Of Aftermarket Additions On An Suv, Christiana L. Katsoulos May 2017

An Experimental Study On Drag Reduction Of Aftermarket Additions On An Suv, Christiana L. Katsoulos

Senior Honors Projects, 2010-2019

Over recent years, the awareness of climate change has become more prevalent worldwide and one major contributor to global warming has been the use of transportation. Vehicles contribute to global warming by releasing petroleum based emissions such as significant amounts of carbon dioxide and numerous other harmful environmental pollutants. SUVs contribute to the emissions problem more so than sedans, since they have lower gas mileage and need more gasoline regularly. The main functionality of sport utility vehicles, or SUVs, includes hauling or off-roading and fuel efficiency is not always the focus in the design process. However, aerodynamic enhancements could improve …


Investigation Of A Novel Turbulence Model And Using Leading-Edge Slots For Improving The Aerodynamic Performance Of Airfoils And Wind Turbines, Saman Beyhaghi May 2017

Investigation Of A Novel Turbulence Model And Using Leading-Edge Slots For Improving The Aerodynamic Performance Of Airfoils And Wind Turbines, Saman Beyhaghi

Theses and Dissertations

Because of the problems associated with increase of greenhouse gases, as well as the limited supplies of fossil fuels, the transition to alternate, clean, renewable sources of energy is inevitable. Renewable sources of energy can be used to decrease our need for fossil fuels, thus reducing impact to humans, other species and their habitats. The wind is one of the cleanest forms of energy, and it can be an excellent candidate for producing electrical energy in a more sustainable manner. Vertical- and Horizontal-Axis Wind Turbines (VAWT and HAWT) are two common devices used for harvesting electrical energy from the wind. …


Numerical Analysis Of A Flapping Elliptic Flat Plate In Hover: A Study Of Leading Edge Vortex Dynamics, C. Vivek Nair May 2017

Numerical Analysis Of A Flapping Elliptic Flat Plate In Hover: A Study Of Leading Edge Vortex Dynamics, C. Vivek Nair

Mechanical and Aerospace Engineering Theses

Flapping flight is an area of research that is gaining a lot of prominence in engineering, especially with the increase in interest in applying the flapping mechanism of natural fliers to small scale MAVs. The ongoing contributions to this field include studies finding optimal wing shape, flap frequency, and flap trajectories. Flapping flight is an unsteady aerodynamic mechanism, and consists of 3 interactive forces: delayed stall, rotational circulation, and wake capture. The dominant lift generating mechanism is the leading edge vortex (LEV). Natural fliers optimize their flap to gain maximize LEV stability. For our research we simulate 2 cases of …


Atmospheric Boundary Layer Processes To Mimic Peak Pressures On Low-Rise Buildings: Cfd Versus Full-Scale And Wind Tunnel Measurements, Hamzeh Gol Zaroudi Jan 2017

Atmospheric Boundary Layer Processes To Mimic Peak Pressures On Low-Rise Buildings: Cfd Versus Full-Scale And Wind Tunnel Measurements, Hamzeh Gol Zaroudi

LSU Doctoral Dissertations

Realistic prediction of peak wind pressures is indispensable in a safe design of low-rise buildings. For several decades wind tunnel testing was employed to obtain wind loads on buildings and other structures. However, there is still doubt in the wind engineering community regarding the adequacy of wind tunnels to predict accurately full-scale pressures on low-rise buildings and small-size structures. The recommendations of the American Society of Civil Engineers (ASCE) 7-10 standard for external pressure coefficients, for roof components and cladding (C&C) design are also based on published wind tunnel data. Recent field measurements show significant deviation of full-scale pressures from …


3d Cfd Investigation Of Low Pressure Turbine Aerodynamics, Jacob Andrew Sharpe Jan 2017

3d Cfd Investigation Of Low Pressure Turbine Aerodynamics, Jacob Andrew Sharpe

Browse all Theses and Dissertations

A 3-D Reynolds-Averaged Navier Stokes (RANS) model of a highly-loaded blade profile has been developed using a commercial CFD code with an unstructured/structured grid and several different turbulence models. The ability of each model to predict total pressure loss performance is examined in terms of the spanwise loss distribution and the integrated total pressure loss coefficient. The flowfield predicted by each model is investigated through comparisons of isosurfaces of Q criterion to previous Implicit Large Eddy Simulation (ILES) results. The 3-equation k-kl-¿ model was shown to provide the most accurate performance predictions for a baseline 3-D LPT geometry, and was …