Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Characterization Of Histological Changes In The Microvasculature Of Rat Skeletal Muscle After Spinal Cord Injury, Sally Lin Oct 2016

Characterization Of Histological Changes In The Microvasculature Of Rat Skeletal Muscle After Spinal Cord Injury, Sally Lin

Master's Theses (2009 -)

The purpose of this study was to determine whether there are histological changes in the microvasculature of rat skeletal muscle following chronic spinal cord injury both above and below the level of injury. This study is important because microvascular structure likely impacts muscle performance and cardiovascular health. To the best of our knowledge, this is the only study to investigate microvascular structure within rat skeletal muscle after spinal cord injury. We hypothesized structural remodeling would occur in both the myofibers and microvasculature, which would then manifest in differences in myofiber cross sectional area and microvascular diameter, wall thickness, wall to …


An Analysis Of Plasticity In The Rat Respiratory System Following Cervical Spinal Cord Injury And The Application Of Nanotechnology To Induce Or Enhance Recovery Of Diaphragm Function, Janelle Lorien Walker Jan 2016

An Analysis Of Plasticity In The Rat Respiratory System Following Cervical Spinal Cord Injury And The Application Of Nanotechnology To Induce Or Enhance Recovery Of Diaphragm Function, Janelle Lorien Walker

Wayne State University Dissertations

Second cervical segment spinal cord hemisection (C2Hx) results in ipsilateral hemidiaphragm paralysis. However, the intact latent crossed phrenic pathway can restore function spontaneously over time or immediately following drug administration.

WGA bound fluorochromes were administered to identify nuclei associated with diaphragm function in both the acute and chronic C2Hx models. WGA is unique in that it undergoes receptor mediated endocytosis and is transsynaptically transported across select physiologically active synapses. Comparison of labeling in the acutely injured to the chronically injured rat provided an anatomical map of spinal and supraspinal injury induced synaptic plasticity. The plasticity occurs over time in the …