Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2016

Microfluidics

Discipline
Institution
Publication

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Concurrent Detection And Isolation Of Cellular And Molecular Biomarkers, Wanfeng Huang Dec 2016

Concurrent Detection And Isolation Of Cellular And Molecular Biomarkers, Wanfeng Huang

Open Access Dissertations

Detection of cancer markers such as protein biomolecules and cancer cells in bodily fluids is of great importance in early diagnosis, prognosis as well as evaluation of therapy efficacy. Numerous devices have been developed for detecting either cellular or molecular targets, however there has not yet been a system that can simultaneously detect both cellular and molecular targets effectively. Molecule and cell-based assays are important because each type of target can tell a different story about the state of the disease and the two types of information can potentially be combined and/or compared for more accurate biological or clinical assessments. …


Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo Dec 2016

Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo

Doctoral Dissertations

In electrochemical energy devices, including fuel cells, electrolyzers and batteries, the electrochemical reactions occur only on triple phase boundaries (TPBs). The boundaries provide the conductors for electros and protons, the catalysts for electrochemical reactions and the effective pathways for transport of reactants and products. The interfaces have a critical impact on the overall performance and cost of the devices in which they are incorporated, and therefore could be a key feature to optimize in order to turn a prototype into a commercially viable product. For electrolysis of water, proton exchange membrane electrolyzer cells (PEMECs) have several advantages compared to other …


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox Dec 2016

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external …


Functional 3-D Cellulose And Nitrocellulose Paper-Based, Microfluidic Device Utilizing Elisa Technology For The Detection/Distinction Between Hemorrhagic And Ischemic Strokes, Alicia Leanne Holler Dec 2016

Functional 3-D Cellulose And Nitrocellulose Paper-Based, Microfluidic Device Utilizing Elisa Technology For The Detection/Distinction Between Hemorrhagic And Ischemic Strokes, Alicia Leanne Holler

Master's Theses

The purpose of this thesis project is to demonstrate and evaluate an enzyme-linked immunosorbent assay (ELISA) on a paper microfluidic device platform. The integration of ELISA technology onto paper microfluidic chips allows for a quantitative detection of stroke biomarkers, such as glial fibrillary acidic protein (GFAP). Dye experiments were performed to confirm fluid connectivity throughout the 3D chips. Several chip and housing designs were fabricated to determine an optimal design for the microfluidic device. Once this design was finalized, development time testing was performed. The results confirmed that the paper microfluidic device could successfully route fluid throughout its channels at …


Inquiry Of Graphene Electronic Fabrication, John Rausch Greene Sep 2016

Inquiry Of Graphene Electronic Fabrication, John Rausch Greene

Master's Theses

Graphene electronics represent a developing field where many material properties and devices characteristics are still unknown. Researching several possible fabrication processes creates a fabrication process using resources found at Cal Poly a local industry sponsor. The project attempts to produce a graphene network in the shape of a fractal Sierpinski carpet. The fractal geometry proves that PDMS microfluidic channels produce the fine feature dimensions desired during graphene oxide deposit. Thermal reduction then reduces the graphene oxide into a purified state of graphene. Issues arise during thermal reduction because of excessive oxygen content in the furnace. The excess oxygen results in …


Fabrication Of 3d Hydrogel-Based Microscale Tissue Analog Chip With Integrated Optofluidics, Venkatakrishnan Rengarajan Aug 2016

Fabrication Of 3d Hydrogel-Based Microscale Tissue Analog Chip With Integrated Optofluidics, Venkatakrishnan Rengarajan

Dissertations

Lab-on-a-chip (LOC) is a device that integrates one or more laboratory functions in a single chip with dimensions ranging from a micrometer to a few millimeters. On-chip optofluidics, which combines microfluidics and tunable micro-optical components, is crucial for bio-sensing applications. However, recently reported optofluidic devices have only two-dimensional (2D) dielectric or metallic regions for sensing cellular activity, which fail to mimic the three-dimensional (3D) in vivo microenvironment of cells.

In this research, a 3D hydrogel-based micro-scale-tissue-analog-chip (µTAC) is fabricated with an integrated optofluidic design for biomedical applications. These 3D hydrogels act as a scaffold for the cellular studies and as …


The Influence Of Relative Particle Size And Material Interactions On The Flow-Induced Detachment Of Particles From A Microchannel, Morgan Brittany Mayfield Jul 2016

The Influence Of Relative Particle Size And Material Interactions On The Flow-Induced Detachment Of Particles From A Microchannel, Morgan Brittany Mayfield

Graduate Theses - Chemical Engineering

Particulate transport in microfluidic channels is difficult due to confined geometries and low flow rates, which promote solids settling. To re-entrain these solids, the detachment behavior of closely-fitting particles from microchannel walls must be understood. Experiments were completed to examine the effects of particle size and material interactions on particle detachment velocity. Studies were conducted for various sizes of glass and poly(methyl methacrylate), PMMA, spheres in glass and poly(dimethyl siloxane), PDMS, microfluidic channels. In addition, an inexpensive method to produce monodisperse PMMA microparticles was developed. To analyze the effect of material interactions, the work of adhesion between the particle and …


Analysis Of Shock-Plugs In Quasi-One-Dimensional Compressible Flow, Matthew Alexander Thompson May 2016

Analysis Of Shock-Plugs In Quasi-One-Dimensional Compressible Flow, Matthew Alexander Thompson

Graduate Theses - Mechanical Engineering

At small length scales, such as in micro-nozzles, the assumption that a shock wave is infinitesimally thin breaks-down due to the thickness of the shock being non-negligible compared to the dimensions of the nozzle. In this thesis, shock waves of finite thickness, or “shock-plugs,” are modeled using the same methods and assumptions as a standard shock wave analysis. Due to the finite thickness of shock-plugs, however, two additional parameters are required in order to account for the differing inlet and exit areas, as well as the pressure on the side walls of the channel. A “typical” micro-nozzle with appropriate dimensions …


Thermal Microfluidic Devices; Design, Fabrication And Applications, Benyamin Davaji Apr 2016

Thermal Microfluidic Devices; Design, Fabrication And Applications, Benyamin Davaji

Dissertations (1934 -)

This thesis investigates the thermal actuation and temperature measurement methods in microfluidic devices. We designed and fabricated microfluidic devices with various functionalities such as: bio sensing, particle counting, microscale calorimetry, and cellular temperature measurement. All of these functionalities use thermal measurement methods. When quantitative measurements are required, the label-free nature of thermal measurement methods, along with its simple readout, make it a powerful candidate for lab on a chip and bio sensing/detection applications. In this work, thermal measurement methods are used to characterize bio-samples, measure concentrations, study thermal responses, and even perform particle cytometry. However, thermal measurement methods are known …


Point Of Care Diagnostics And Health Monitoring Devices, Akshaya Shanmugam Mar 2016

Point Of Care Diagnostics And Health Monitoring Devices, Akshaya Shanmugam

Doctoral Dissertations

Existing disease screening methods mostly rely on symptom based diagnosis. This is mainly because of lack of accessibility and cost associated with the tests. Testing for the presence of the disease after the onset of symptoms has a negative impact on chances of survival and treatment costs. Miniaturized low cost diagnostic devices that can be used outside the hospital setting can provide continuous health monitoring and aid in early diagnosis. This thesis presents techniques to develop such disease screening and health monitoring devices. The techniques presented here focus on medical devices that can benefit from microfluidic devices, fluorescence imaging, and …


Microfluidic Devices And Biosensors, Long-Fang Tsai Feb 2016

Microfluidic Devices And Biosensors, Long-Fang Tsai

Theses and Dissertations

My research broadly covers various important aspects of microfluidic devices and biosensors. Specifically, this dissertation reports: (1) a new and effective room temperature method of bonding polydimethylsiloxane (PDMS) microfluidics to substrates such as silicon and glass, (2) a new microfluidic pump concept and implementation specifically designed to repeatedly drive a small sample volume (<1 µL) very rapidly (~500 µL/min) through a sensor-containing flow channel to significantly decrease sensor response time through advection-driven rather than diffusion-driven mass transport, (3) use of a new microfluidic material based on polyethylene glycol diacrylate (PEGDA) to implement impedance-based dynamic nanochannel sensors for protein sensing, and (4) an investigation of galvanoluminescence and how to avoid it for conditions important to fluorescence-based dielectrophoresis (DEP) microfluidic biosensors. Over the last decade, the Nordin research group has developed a lab-on-a-chip (LOC) biosensor based on silicon photonic microcantilever arrays integrated with polydimethylsiloxane (PDMS) microfluidics for protein biomarker detection. Integration requires reliable bonding at room temperature with adequate bond strength between the PDMS element and microcantilever sensor substrate. The requirement for a room temperature process is particularly critical because microcantilevers must be individually functionalized with antibody-based receptor molecules prior to bonding and cannot withstand significant heating after functionalization. I developed a new room temperature bonding method using PDMS curing agent as an intermediate adhesive layer. Two curing agents (Sylgard 184 and 182) were compared, as well as an alternate UV curable adhesive (NOA 75). The bond strength of Sylgard 184 was found to be stronger than Sylgard 182 under the same curing conditions. Overnight room temperature curing with Sylgard 184 yields an average burst pressure of 433 kPa, which is more than adequate for many PDMS sensor devices. In contrast, UV curable epoxy required a 12 hour bake at 50 °C to achieve maximum bond strength, which resulted in a burst pressure of only 124 kPa. In many biosensing scenarios it is desirable to use a small sample volume (<1 µL) to detect small analyte concentrations in as short a time as possible. I report a new microfluidic pump to address this need, which we call a reflow pump. It is designed to rapidly pump a small sample volume back and forth in a flow channel. Ultimately, the flow channel would contain functionalized sensor surfaces. The rapid flow permits use of advection-driven mass transport to the sensor surfaces to dramatically reduce sensor response times compared to diffusion-based mass transport. Normally such rapid flow would have the effect of decreasing the fraction of analyte molecules in the volume that would see the sensor surfaces. By configuring the pump to reflow fluid back and forth in the flow channel, the analyte molecules in the small sample volume are used efficiently in that they have many opportunities to make it to the sensor surfaces. I describe a 3-layer PDMS reflow pump that pumps 300 nL of fluid at 500 µL/min for 15 psi actuation pressure, and demonstrate a new two-layer configuration that significantly simplifies pump fabrication. Impedance-based nanochannel sensors operate on the basis of capturing target molecules in nanochannels such that impedance through the nanochannels is increased. While simple in concept, the response time can be quite long (8~12 hours) because the achievable flow rate through a nanochannel is very limited. An approach to dramatically increase the flow rate is to form nanochannels only during impedance measurements, and otherwise have an array of nanotrenches on the surface of a conventional microfluidic flow channel where they are exposed to normal microfluidic flow rates. I have implemented such a dynamic nanochannel approach with a recently-developed microfluidic material based polyethylene glycol diacrylate (PEGDA). I present the design, fabrication, and testing of PEGDA dynamic nanochannel array sensors, and demonstrate an 11.2 % increase in nanochannel impedance when exposed to 7.2 µM bovine serum albumin (BSA) in phosphate buffered saline (PBS). Recently, LOC biosensors for cancer cell detection have been demonstrated based on a combination of dielectrophoresis (DEP) and fluorescence detection. For fluorescence detection it is critical to minimize other sources of light in the system. However, reported devices use a non-noble metal electrode, indium tin oxide (ITO), to take advantage of its optical transparency. Unfortunately, use of non-noble metal electrodes can result in galvanoluminescence (GL) in which the AC voltage applied to the electrodes to achieve DEP causes light emission, which can potentially confound the fluorescence measurement. I designed and fabricated two types of devices to examine and identify conditions that lead to GL. Based on my observations, I have developed a method to avoid GL that involves measuring the impedance spectrum of a DEP device and choosing an operating frequency in the resistive portion of the spectrum. I also measure the emission spectrum of twelve salt solutions, all of which exhibited broadband GL. Finally, I show that in addition to Au, Cr and Ni do not exhibit GL, are therefore potentially attractive as low cost DEP electrode materials.


Transient Cfd Simulations Of Pumping And Mixing Using Electromagnetic, Fangping Yuan Jan 2016

Transient Cfd Simulations Of Pumping And Mixing Using Electromagnetic, Fangping Yuan

Doctoral Dissertations

"In this dissertation, two dimensional and three dimensional, transient CFD simulations are conducted to investigate the active pumping and mixing in microfluidics driven by Electromagnetic/Lorentz force. Shallow disk/ring cylindrical microfluidic cell and shallow cuboid microfluidic cell with electrodes deposited on the bottom surface are modelled for mixing and pumping purposes respectively. By applying voltage across specific pair of electrodes, an ionic current is established in the weak conductive liquid present in the cell. The current interacts with an externally applied magnetic field generating a Lorentz force that causes fluid motion in the cell. Velocity vectors, electric potential distributions and ionic …


Microfluidic Device For Motility And Osmolality Analysis Of Zebrafish Sperm, Jacob Ethan Beckham Jan 2016

Microfluidic Device For Motility And Osmolality Analysis Of Zebrafish Sperm, Jacob Ethan Beckham

LSU Master's Theses

An increasing number of laboratories are evaluating sample quality via motility analysis by means of computer-assisted sperm analysis (CASA) after sperm activation by manual dilution and mixing. Even with the use of CASA, due to user variation, there is a lack of control over the activation process, resulting in inconsistent motility analysis. Low sample volume (~1-2µL), and a short motility duration (burst motility of less than 15s) add to the complexity of these difficulties. The objectives of this study were to develop a microfluidic device with the capabilities to (1) standardize the method of activation for zebrafish sperm so that …


Development Of Microfluidic Devices To Study Algal Chemotaxis And Long-Term Growth Dynamics, Benjamin Seth Roberts Jan 2016

Development Of Microfluidic Devices To Study Algal Chemotaxis And Long-Term Growth Dynamics, Benjamin Seth Roberts

LSU Master's Theses

Harmful algal blooms pose a threat to human health and the environment. Many complex factors influence their formation and development, and much is still unknown. One major influencing factor that is well-known yet poorly studied is algal chemotaxis. Many studies have examined chemotaxis in other organisms, but very little about chemotaxis in algae has been studied, largely because existing technology and assay techniques are inadequate. Microfluidics offers many possibilities for cell biology, and has been applied to the study of chemotaxis in other organisms already. These techniques can be applied to the study of algal chemotaxis as well. We present …