Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2015

Robotics

Discipline
Institution
Publication

Articles 1 - 17 of 17

Full-Text Articles in Engineering

How Can We Build A Moral Robot?, Kristen E. Clark Dec 2015

How Can We Build A Moral Robot?, Kristen E. Clark

Capstones

Artificial intelligence is already starting to drive our cars and make choices that affect the world economy. One day soon, we’ll have robots that can take care of our sick and elderly, and even rescue us in rescue us in emergencies. But as robots start to make decisions that matter—it’s raising questions that go far beyond engineering. We’re stating to think about ethics.

Bertram Malle and Matthias Scheutz are part of a team funded by the department of defense. It's their job to answer a question that seems straight out of a sci-fi novel: How can we build a moral …


Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii Dec 2015

Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii

University of New Orleans Theses and Dissertations

An anguilliform swimming robot replicating an idealized motion is a complex marine vehicle necessitating both a theoretical and experimental analysis to completely understand its propulsion characteristics. The ideal anguilliform motion within is theorized to produce ``wakeless'' swimming (Vorus, 2011), a reactive swimming technique that produces thrust by accelerations of the added mass in the vicinity of the body. The net circulation for the unsteady motion is theorized to be eliminated.

The robot was designed to replicate the desired, theoretical motion by applying control theory methods. Independent joint control was used due to hardware limitations. The fluid velocity vectors in the …


Design, Manufacturing And Control Of An Advanced High-Precision Robotic System For Microsurgery, Arezoo Ebrahimi Dec 2015

Design, Manufacturing And Control Of An Advanced High-Precision Robotic System For Microsurgery, Arezoo Ebrahimi

Electronic Theses and Dissertations

Microsurgeries like ophthalmic surgery confront many challenges like limited workspace and hand motion, steady hand movements, manipulating delicate thin tissues, and holding the instrument in place for a long time. New developments in robotically-assisted surgery can highly benefits this field and facilitate those complicated surgeries. Robotic eye surgery can save time, reduce surgical complications and inspire more delicate surgical procedures that cannot be done currently by surgeon’s hands. In this thesis work, the requirements for ophthalmic surgeries were studied and based on that a robotic system with 6 DOF is proposed and designed. This robotic

system is capable of handling …


Design And Manufacture Of Mesoscale Robot-Actuated Surgical Instruments, Clayton L. Grames Nov 2015

Design And Manufacture Of Mesoscale Robot-Actuated Surgical Instruments, Clayton L. Grames

Theses and Dissertations

Minimally Invasive Surgery (MIS) is a growing field including both laparoscopic androbotic operations. Surgeons and engineers are making continual efforts to reduce the negative effects of procedures on patients. Reducing the size of the surgical instruments is one effective method pursued in this effort. When the instruments approach 3 mm in diameter, they reach a threshold where the entry incisions can be small enough that no scar is left on the patient. Laparoscopic instruments on this scale exist but typically lack wrist articulation and only have 1 degree of freedom (DoF). Alternatively, robotic surgical instruments can achieve high levels of …


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …


Roborodentia Robot, Jordan Dykstra, Anibal Hernandez, Robert Prosser Jun 2015

Roborodentia Robot, Jordan Dykstra, Anibal Hernandez, Robert Prosser

Computer Engineering

This report provides details on the design and implementation of a robot for the Spring 2015 Roborodentia competition. The system is described from a software perspective, a hardware perspective, and a mechanical design perspective.


Basketballbot: Education Level Development Of A Fuzzy Controller For A Linear Motor Under Saturation Limits, David L. Mcpherson May 2015

Basketballbot: Education Level Development Of A Fuzzy Controller For A Linear Motor Under Saturation Limits, David L. Mcpherson

Honors Theses

Fuzzy logic seeks to express human modes of reasoning and decision making in a mathematical form. This is evident in its terminology such as “linguistic variables” defined over a “universe of discourse”. By taking human expressions such as “very high” or “pretty cold” and defining them in a mathematical context, expert operator knowledge can be transferred from verbal descriptions into automated control algorithms regardless of the operator’s familiarity with control systems. Because fuzzy logic is designed to be easily comparable with human thought, it makes an excellent first exposure to control systems concepts to high school and undergraduate students. Additionally, …


A Compliant Mechanism-Based Variable-Stiffness Joint, Jacob Marc Robinson Apr 2015

A Compliant Mechanism-Based Variable-Stiffness Joint, Jacob Marc Robinson

Theses and Dissertations

A review of current variable-stiffness actuators reveals a need for more simple, cost effective, and lightweight designs that can be easily incorporated into a variety of human-interactive robot platforms. This thesis considers the potential use of compliant mechanisms to improve the performance of variable-stiffness actuators. The advantages and disadvantages of various concepts using compliant mechanisms are outlined, along with ideas for further exploration. A new variable-stiffness actuator that uses a compliant flexure as the elastic element has been modeled, built, and tested. This new design involves a variable stiffness joint that makes use of a novel variable transmission. A prototype …


Characterization Of A Robotic Manipulator For Dynamic Wind Tunnel Applications, James C. Lancaster Mar 2015

Characterization Of A Robotic Manipulator For Dynamic Wind Tunnel Applications, James C. Lancaster

Theses and Dissertations

The newly acquired 6-DOF Motion Test Apparatus (MTA) was installed to perform dynamic wind tunnel testing in the AFIT Low Speed Wind Tunnel. Several complex motions revealed that the overall performance of the test rig needed improvement especially during small motions. The motions exposed that further enhancements would need to be performed individually for each joint. This research effort focused on the improvement of the MTA wrist roll motor and controller using a pitch oscillation. The controller software was improved using position feedback because the MTA wrist roll motor and controller exhibited reduced signal bias and amplitude attenuation. The enhanced …


An Opportunistic Service Oriented Approach For Robot Search, Dan Xie Mar 2015

An Opportunistic Service Oriented Approach For Robot Search, Dan Xie

Doctoral Dissertations

Health care for the elderly poses a major challenge as the baby boomer generation ages. Part of the solution is to develop technology using sensor networks and service robotics to increase the length of time that an elder can remain at home. Since moderate immobility and memory impairment are common as people age, a major problem for the elderly is locating and retrieving frequently used "common" objects such as keys, cellphones, books, etc. However, for robots to assist people while they search for objects, they must possess the ability to interact with the human client, complex client-side environments and heterogeneous …


Learning Parameterized Skills, Bruno Castro Da Silva Mar 2015

Learning Parameterized Skills, Bruno Castro Da Silva

Doctoral Dissertations

One of the defining characteristics of human intelligence is the ability to acquire and refine skills. Skills are behaviors for solving problems that an agent encounters often—sometimes in different contexts and situations—throughout its lifetime. Identifying important problems that recur and retaining their solutions as skills allows agents to more rapidly solve novel problems by adjusting and combining their existing skills. In this thesis we introduce a general framework for learning reusable parameterized skills. Reusable skills are parameterized procedures that—given a description of a problem to be solved—produce appropriate behaviors or policies. They can be sequentially and hierarchically combined with other …


Optimal Design And Control Of A Lower-Limb Prosthesis With Energy Regeneration, Holly E. Warner Jan 2015

Optimal Design And Control Of A Lower-Limb Prosthesis With Energy Regeneration, Holly E. Warner

ETD Archive

The majority of amputations are of the lower limbs. This correlates to a particular need for lower-limb prostheses. Many common prosthesis designs are passive in nature, making them inefficient compared to the natural body. Recently as technology has progressed, interest in powered prostheses has expanded, seeking improved kinematics and kinetics for amputees. The current state of this art is described in this thesis, noting that most powered prosthesis designs do not consider integrating the knee and the ankle or energy exchange between these two joints. An energy regenerative, motorized prosthesis is proposed here to address this gap. After preliminary data …


Multi-3d System: Advanced Manufacturing Through The Implementation Of Material Handling Robotics, Jose Luis Coronel Jr. Jan 2015

Multi-3d System: Advanced Manufacturing Through The Implementation Of Material Handling Robotics, Jose Luis Coronel Jr.

Open Access Theses & Dissertations

Since the rise of additive manufacturing (AM), innovation has been at the forefront. Additive Manufacturing systems that incorporate complex processes are steadily being developed. One example is the Multi3D System, which was designed to integrate the ability to print multi-material parts with that of embedding electronics. To achieve this automated process, the Multi3D incorporates a six-axis robotic arm to transfer a build platform containing a printed part, to various manufacturing stations (two fused deposition modeling (Stratasys, FDM400mc) systems and a computer numerical control router (Techno CNC Router). The robot is a Yaskawa Motoman MH50 chosen for its payload capacity of …


A Cost-Effective Haptic Device For Assistive And Rehabilitation Purposes, Archana Pradeep Jan 2015

A Cost-Effective Haptic Device For Assistive And Rehabilitation Purposes, Archana Pradeep

Masters Theses

With the growing population of elderly, the need for assistance has also increased considerably especially for the tasks such as cleaning, reaching and grasping objects among others. There are numerous assistive devices in the market for this group of people. However, they are either too expensive or require overwhelming user effort for manipulation. Therefore, the presented research is primarily concerned with developing a low-cost, easy to use assistive device for elderly to reach and grasp objects through intuitive interface for the control of a slave anthropomorphic robotic arm (tele operator). The system also implements haptic feedback technology that enables the …


Autonomous Quadcopter Videographer, Quiquia Rey Coaguila Jan 2015

Autonomous Quadcopter Videographer, Quiquia Rey Coaguila

Electronic Theses and Dissertations

In recent years, the interest in quadcopters as a robotics platform for autonomous photography has increased. This is due to their small size and mobility, which allow them to reach places that are difficult or even impossible for humans. This thesis focuses on the design of an autonomous quadcopter videographer, i.e. a quadcopter capable of capturing good footage of a specific subject. In order to obtain this footage, the system needs to choose appropriate vantage points and control the quadcopter. Skilled human videographers can easily spot good filming locations where the subject and its actions can be seen clearly in …


Generalized Mapping And Object Removal, Duncan Campbell Jan 2015

Generalized Mapping And Object Removal, Duncan Campbell

Williams Honors College, Honors Research Projects

Simultaneous localization and mapping (SLAM) is a problem that has been explored for the past few decades. SLAM deals with the concept of a robot being introduced into an environment in which it has no prior knowledge. Then, through the use of sensors, the robot is able to map its environment while simultaneously determining its position within the given area. While there has been extensive research into the development of methods by which this problem can be solved, not much has been done on what to do with the resulting maps once they are produced. The research conducted deals with …


Adaptive Control For Autonomous Navigation Of Mobile Robots Considering Time Delay And Uncertainty, Stephen Kofi Armah Jan 2015

Adaptive Control For Autonomous Navigation Of Mobile Robots Considering Time Delay And Uncertainty, Stephen Kofi Armah

Dissertations

Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always …