Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2014

Electrical and Electronics

Institution
Keyword
Publication

Articles 1 - 30 of 184

Full-Text Articles in Engineering

Cloud-Induced Uncertainty For Visual Navigation, Alyssa N. Gutierrez Dec 2014

Cloud-Induced Uncertainty For Visual Navigation, Alyssa N. Gutierrez

Theses and Dissertations

This research addresses the numerical distortion of features due to the presence of clouds in an image. The research aims to quantify the probability of a mismatch between two features in a single image, which will describe the likelihood that a visual navigation system incorrectly tracks a feature throughout an image sequence, leading to position miscalculations. First, an algorithm is developed for calculating transparency of clouds in images at the pixel level. The algorithm determines transparency based on the distance between each pixel color and the average pixel color of the clouds. The algorithm is used to create a dataset …


Quantitative Comparison Of Time-Frequency Decomposed Gait Emg Signals, L. Patrick Mitchell Dec 2014

Quantitative Comparison Of Time-Frequency Decomposed Gait Emg Signals, L. Patrick Mitchell

Theses and Dissertations

Falls in the senior population represent an immediate threat to both current and future generations’ quality of life. The results of falls can be disastrous, create a long road to recovery, and in many cases result in death. Hypertension represents a difficult-to-quantify condition which is known to contribute to gait and balance dysfunction. Accurate assessment of conditions such as these represents an area of primary investigative need. In order to meet this need, a new experimental setup is developed which combines time-frequency analysis with surface electromyography (sEMG) signals obtained during ambulation. 3-bit pressure data is acquired using a pressure-sensitive mat, …


Uwb Precise Indoor Localization System Performance, Limitations And Its Integration, Essam Abdelkadir Elkhouly Dec 2014

Uwb Precise Indoor Localization System Performance, Limitations And Its Integration, Essam Abdelkadir Elkhouly

Doctoral Dissertations

An indoor localization system that was built at University of Tennessee is extensively studied and improved. The goal of the system is to achieve mm down to sub-mm accuracy/precision.

Sub-sampling is used to alleviate the high sampling rate required for UWB signals. Current commercial direct sampling systems are still too slow or prohibitively expensive for UWB applications. We developed two different sub-sampling techniques, but the two systems suffer numerous shortcomings: low throughput, non-robustness, non-linearity. A third system is introduced that achieve both high accuracy and high through-put. Changes in the detection algorithm and the frame synchronization are developed to accommodate …


A Low-Power, Reconfigurable, Pipelined Adc With Automatic Adaptation For Implantable Bioimpedance Applications, Terence Cordell Randall Dec 2014

A Low-Power, Reconfigurable, Pipelined Adc With Automatic Adaptation For Implantable Bioimpedance Applications, Terence Cordell Randall

Doctoral Dissertations

Biomedical monitoring systems that observe various physiological parameters or electrochemical reactions typically cannot expect signals with fixed amplitude or frequency as signal properties can vary greatly even among similar biosignals. Furthermore, advancements in biomedical research have resulted in more elaborate biosignal monitoring schemes which allow the continuous acquisition of important patient information. Conventional ADCs with a fixed resolution and sampling rate are not able to adapt to signals with a wide range of variation. As a result, reconfigurable analog-to-digital converters (ADC) have become increasingly more attractive for implantable biosensor systems. These converters are able to change their operable resolution, sampling …


Wildlife Deterrence Method Test Device, Garrett Tietz, Adam Webb, Dane Knutson Dec 2014

Wildlife Deterrence Method Test Device, Garrett Tietz, Adam Webb, Dane Knutson

Mechanical Engineering

The objective of the Deer Busters team is to design and build a device or system of devices that will be used to determine which method, or methods, are most effective at deer deterrence. JumpSport suspects that a method which gives the appearance of approach to the deer in an aggressive or startling manner but also changes the way it attacks so that the deer do not get used to the device will be most effective. Deer Busters is committed to the completion of the deer deterrent testing device by the end of the fall quarter of 2014.


An Optogenetic Brain-Machine Interface For Spatiotemporal Neuromodulation, Ryan Andrew Baumgartner Dec 2014

An Optogenetic Brain-Machine Interface For Spatiotemporal Neuromodulation, Ryan Andrew Baumgartner

Theses and Dissertations

Direct neural stimulation has recently become a standard therapy for neurological disorders such as Parkinson's Disease, Essential Tremors, and Dystonia. Currently, deep brain electro-stimulation and neuro-pharmaceutical treatments are the dominant therapeutic options available to the public. As our understanding of brain function and neurological diseases improves, we are able to develop more advanced neuromodulation techniques. These methods could become viable treatment solutions for treating brain dysfunction. Optogenetics, first introduced by a research team led by Karl Deisseroth at Stanford University, has proved to be a versatile technique with remarkable potential to be used in treatments for brain disorders, dysfunction, and …


Improving Mri Surface Coil Decoupling To Reduce B1 Distortion, Christian K. Larson Dec 2014

Improving Mri Surface Coil Decoupling To Reduce B1 Distortion, Christian K. Larson

Theses and Dissertations

As clinical MRI systems continue to advance, larger focus is being given to image

uniformity. Good image uniformity begins with generating uniform magnetic fields, which

are easily distorted by induced currents on receive-only surface coils. It has become an

industry standard to combat these induced currents by placing RF blocking networks on

surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of …


Speech Perception In Reverberated Condition By Cochlear Implants, Moulesh Bhandary Dec 2014

Speech Perception In Reverberated Condition By Cochlear Implants, Moulesh Bhandary

Theses and Dissertations

Previous Studies for bilateral cochlear implants users examined cocktail -party setting under anechoic listening conditions. However in real world listeners always encounter problems of reverberation, which could significantly deteriorate speech intelligibility for all listeners, independent of their hearing status.

The object of this study is to investigate the effects of reverberation on the binaural benefits for speech recognition by bilateral cochlear-implant (CI) listeners.

Bilateral CI subject was tested under different reverberation conditions. IEEE recorded sentences from one male speaker mixed with either speech shaped noise (ssn), energy masking, or with 2 female competing takers (2fsn), informational masking, at different signal …


Designing And Implementing A Micro-Controller Based Primary-Side Sensing Flyback Converter For Leds Driver, Nam Nhat Tran Dec 2014

Designing And Implementing A Micro-Controller Based Primary-Side Sensing Flyback Converter For Leds Driver, Nam Nhat Tran

Graduate Theses and Dissertations

The fast development of LED and its applications has enabled a new generation of lighting device with higher efficiency and long lifespan. By employing a primary-side sensing flyback converter and the PIC18F micro-controller series, an LED driver could achieve two important features: (1) the compatibility with the available lighting fixtures, and (2) reducing unit price. The flyback converter was chosen for its simplicity, competitive low cost, and its ability to provide a constant output current, a necessarily important factor to an LED driver. Meanwhile, the PIC18F micro-controller series offer numerous advanced features which include but not limited to pulse-width modulation …


High Voltage Pulse-Width Generator For The Algae Biofuel Project, Philip Yu, Stephen Leung Dec 2014

High Voltage Pulse-Width Generator For The Algae Biofuel Project, Philip Yu, Stephen Leung

Electrical Engineering

This purpose of this project, sponsored by Boeing and advised by Dr. Arakaki and Dr. Taufik, is to build a high voltage pulse width generator that lyses algae cells to harvest the biofuel within. This project uses Emmanuel Loza's thesis on a cascaded high voltage converter with variable control to build a portable pulse width generator with independent control on the peak voltage, pulse width, and frequency. The project focuses on creating a pulse width generator capable of finding the most optimal pulsed electric field to lyse algae. The pulse width module ranges from 10V-80V peak voltage, 60Hz-100 kHz frequency, …


Gesn Light-Emitting Devices, Yiyin Zhou Dec 2014

Gesn Light-Emitting Devices, Yiyin Zhou

Graduate Theses and Dissertations

Silicon based optoelectronic devices have been investigated for decades. However, due to the indirect band gap nature of Si and Ge, developing of efficient light-emitting source on Si is still a challenging topic. GeSn based optoelectronic devices have the great potential to overcome this deficiency for several reasons. By adding more fraction of Sn into Ge, GeSn band gap could be reduced. The narrowed band gap could be developed for near to mid infrared applications. The alloy can even become the direct band gap material with a large Sn composition (beyond 8%). This feature could enhance the light emission from …


Transimpedance Amplifier For Polymer Photodiodes, Sheridan Knighton Dec 2014

Transimpedance Amplifier For Polymer Photodiodes, Sheridan Knighton

Electrical Engineering

Dr. Braun’s students in the Polymer Electronics Lab currently have a way to measure the light intensity from their light emitting devices however it consumes an unnecessary amount of space and power. I offer to improve upon the existing transimpedance circuit that Dr. Braun currently uses, reducing the total space occupied by the circuit and the power consumption of the current setup. The transimpedance circuit measures the incidence light intensity from the polymer-based photo detector and outputs an accurate, discrete, and measurable voltage. The current setup however utilizes two 20V wall warts for the positive and negative rails of the …


Energy Harvesting From Exercise Machines: Lt8705 Dc-Dc Conversion For Elliptical Trainers, Braden Burk, Raj Bhula, Nathan Mckay Dec 2014

Energy Harvesting From Exercise Machines: Lt8705 Dc-Dc Conversion For Elliptical Trainers, Braden Burk, Raj Bhula, Nathan Mckay

Electrical Engineering

Cal Poly’s Energy Harvesting from Exercise Machines (EHFEM) program aims to power the grid using human energy harvested from exercise machines in its gym. Doing so could save the school money and increase the total supply of power available on the grid. This document belongs to one of many groups attempting to design a suitable DC-DC conversion system for an elliptical trainer using an LT8705 Four-Switch Buck-Boost converter. Past teams have built other converters and developed system compatibility characteristics such as filtering, safety, and stability for interfacing components. These teams fall into one of two departments in EHFEM: DC-DC Conversion …


Microprocessor Management Of Energy Harvesting Buck Boost Converters, Timothy O'Sullivan Dec 2014

Microprocessor Management Of Energy Harvesting Buck Boost Converters, Timothy O'Sullivan

Electrical Engineering

No abstract provided.


Buck Converter, Bowen Liu Dec 2014

Buck Converter, Bowen Liu

Electrical Engineering

The recent sustainable energy growth triggered a huge power electronics demand, specifically related to power conversion. My senior project is a design of a buck converter which steps down the voltage from photovoltaic cells ranging from 5 to 40V to a rechargeable battery with 5V. This converter has a high enough power efficiency to effectively convert the energy harnessed from PV panels.


Metal Assisted Nanowire Growth For Silicon Nanowire/Amorphous Silicon Composite Solar Cell, Asmaa Ali Sadoon Dec 2014

Metal Assisted Nanowire Growth For Silicon Nanowire/Amorphous Silicon Composite Solar Cell, Asmaa Ali Sadoon

Graduate Theses and Dissertations

Solar cells are photovoltaic devices that convert the energy of light to electricity by the photovoltaic effect. Crystalline silicon-based solar cells are the most dominant solar cells in the market today due to the high efficiency and relatively low cost. However, the cost of such solar cell is still high due to the large amount of material that is consumed in fabricating such a device. Polycrystalline/amorphous thin films and nanomaterial technologies have emerged to reduce the high cost of c-Si based solar cells and increase the efficiency. In this research, we combined these two technologies to propose and fabricate silicon …


The Role Of Quantum Dot Size On The Performance Of Intermediate Band Solar Cells, Najla Alnami Dec 2014

The Role Of Quantum Dot Size On The Performance Of Intermediate Band Solar Cells, Najla Alnami

Graduate Theses and Dissertations

The goal of this thesis is to understand possible mechanisms for the reported decrease of the open circuit voltage and solar cell efficiency in quantum dot (QD) intermediate band solar cells (IBSCs). More specifically, the effect of indium arsenide (InAs) QD height on the open circuit voltage and solar cell efficiency was studied in a systematic way. To explore this effect in QD solar cells, several solar cells (SCs) were grown with varying InAs QD heights. All experimental characteristics of the QD solar cells were compared to a reference structure without QDs. All samples were grown by Molecular Beam Epitaxy …


Novel Method For Broadband On-Chip Noise Characterization, Mohammad Ghadiri Sadrabadi Nov 2014

Novel Method For Broadband On-Chip Noise Characterization, Mohammad Ghadiri Sadrabadi

Masters Theses

A novel method for on-chip noise characterization of mm-wave circuits is presented. Different available methods for noise measurements and requirements for on-chip noise mea-surements are studied. The Y-factor method is chosen to be the more suitable method for in-situ applications since it does not require absolute measurements. A state of the art CMOS noise source is implemented in 32nm SOI CMOS technology to enable the in-situ noise measurements of a 20-35 GHz reconfigurable low noise amplifier. Measurement results show that the ENR of the noise source is repeatable enough so that the calibration of the noise source is only required …


Design Of Non-Uniform Linear Array Via Linear Programming And Particle Swarm Optimization And Studies On Phased Array Calibration, Hua Bai Nov 2014

Design Of Non-Uniform Linear Array Via Linear Programming And Particle Swarm Optimization And Studies On Phased Array Calibration, Hua Bai

Masters Theses

For a linear array, the excitation coefficients of each element and its geometry play an important role, because they will determine the radiation pattern of the given array. Side Lobe Level (SLL) is one of the key parameters to evaluate the radiation pattern of the array. Generally speaking, we desire SLL to be as low as possible. For the linear array with uniform spacing, there are some classic methods to calculate the excitation coefficients to make the radiation pattern satisfy the given requirements. For the linear array with non-uniform spacing, linear programming and particle swarm optimization are proposed to calculate …


Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park Oct 2014

Advanced Iii-V / Si Nano-Scale Transistors And Contacts: Modeling And Analysis, Seung Hyun Park

Open Access Dissertations

The exponential miniaturization of Si CMOS technology has been a key to the electronics revolution. However, the continuous downscaling of the gate length becomes the biggest challenge to maintain higher speed, lower power, and better electrostatic integrity for each following generation. Hence, novel devices and better channel materials than Si are considered to improve the metal-oxide-semiconductor field-effect transistors (MOSFETs) device performance. III-V compound semiconductors and multi-gate structures are being considered as promising candidates in the next CMOS technology. III-V and Si nano-scale transistors in different architectures are investigated (1) to compare the performance between InGaAs of III-V compound semiconductors and …


Power-Efficient High-Speed Interface Circuit Techniques, Elkim Felipe Roa Fuentes Oct 2014

Power-Efficient High-Speed Interface Circuit Techniques, Elkim Felipe Roa Fuentes

Open Access Dissertations

Inter- and intra-chip connections have become the new challenge to enable the scaling of computing systems, ranging from mobile devices to high-end servers. Demand for aggregate I/O bandwidth has been driven by applications including high-speed ethernet, backplane micro-servers, memory, graphics, chip-to-chip and network onchip. I/O circuitry is becoming the major power consumer in SoC processors and memories as the increasing bandwidth demands larger per-pin data rate or larger I/O pin count per component. The aggregate I/O bandwidth has approximately doubled every three to four years across a diverse range of standards in different applications. However, in order to keep pace …


Computing With Spintronics: Circuits And Architectures, Rangharajan Venkatesan Oct 2014

Computing With Spintronics: Circuits And Architectures, Rangharajan Venkatesan

Open Access Dissertations

This thesis makes the following contributions towards the design of computing platforms with spintronic devices. 1) It explores the use of spintronic memories in the design of a domain-specific processor for an emerging class of data-intensive applications, namely recognition, mining and synthesis (RMS). Two different spintronic memory technologies — Domain Wall Memory (DWM) and STT-MRAM — are utilized to realize the different levels in the memory hierarchy of the domain-specific processor, based on their respective access characteristics. Architectural tradeoffs created by the use of spintronic memories are analyzed. The proposed design achieves 1.5X-4X improvements in energy-delay product compared to a …


Estimating Toner Usage With Laser Electrophotographic Printers, And Object Map Generation From Raster Input Image, Lu Wang Oct 2014

Estimating Toner Usage With Laser Electrophotographic Printers, And Object Map Generation From Raster Input Image, Lu Wang

Open Access Dissertations

Accurate estimation of toner usage is an area of on-going importance for laser, electrophotographic (EP) printers. In Part 1, we propose a new two-stage approach in which we first predict on a pixel-by-pixel basis, the absorptance from printed and scanned pages. We then form a weighted sum of these pixel values to predict overall toner usage on the printed page. The weights are chosen by least-squares regression to toner usage measured with a set of printed test pages. Our two-stage predictor significantly outperforms existing methods that are based on a simple pixel counting strategy in terms of both accuracy and …


Image Analysis Using Visual Saliency With Applications In Hazmat Sign Detection And Recognition, Bin Zhao Oct 2014

Image Analysis Using Visual Saliency With Applications In Hazmat Sign Detection And Recognition, Bin Zhao

Open Access Dissertations

Visual saliency is the perceptual process that makes attractive objects "stand out" from their surroundings in the low-level human visual system. Visual saliency has been modeled as a preprocessing step of the human visual system for selecting the important visual information from a scene. We investigate bottom-up visual saliency using spectral analysis approaches. We present separate and composite model families that generalize existing frequency domain visual saliency models. We propose several frequency domain visual saliency models to generate saliency maps using new spectrum processing methods and an entropy-based saliency map selection approach. A group of saliency map candidates are then …


Quantifying Aesthetics Of Visual Design Applied To Automatic Design, Ali Jahanian Oct 2014

Quantifying Aesthetics Of Visual Design Applied To Automatic Design, Ali Jahanian

Open Access Dissertations

In today's "Instagram" world, with advances in ubiquitous computing and access to social networks, digital media is adopted by art and culture. In this dissertation, we study what makes a good design by investigating mechanisms to bring aesthetics of design from realm of subjection to objection. These mechanisms are a combination of three main approaches: learning theories and principles of design by collaborating with professional designers, mathematically and statistically modeling good designs from large scale datasets, and crowdscourcing to model perceived aesthetics of designs from general public responses. We then apply the knowledge gained in automatic design creation tools to …


Material And Device Aspects Of Semiconducting Two-Dimensional Crystals, Han Liu Oct 2014

Material And Device Aspects Of Semiconducting Two-Dimensional Crystals, Han Liu

Open Access Dissertations

Two-dimensional (2D) crystals have attracted much attention in recent years due to their unique physical, chemical, and mechanical properties. Semiconducting 2D crystals with van der Waals structures, such as transition metal dichalcogenides, are considered promising candidates for future device applications, as many have large band gaps, high carrier mobilities, and enable devices with immunity to short channel effects in addition to compatibility with silicon CMOS processes.^ In this thesis, the fundamental device implications of using semiconducting 2D crystals are investigated. This includes: 1) the optimization of device fabrication processing for better device performance, 2) comparing the device physics in 2D …


Nearly Orthogonal, Doppler Tolerant Waveforms And Signal Processing For Multi-Mode Radar Applications, Uttam Kumar Majumder Oct 2014

Nearly Orthogonal, Doppler Tolerant Waveforms And Signal Processing For Multi-Mode Radar Applications, Uttam Kumar Majumder

Open Access Dissertations

In this research, we investigate the design and analysis of nearly orthogonal, Doppler tolerant waveforms for diversity waveform radar applications. We then present a signal processing framework for joint synthetic aperture radar (SAR) and ground moving target indication (GMTI) processing that is built upon our proposed waveforms. ^ To design nearly orthogonal and Doppler tolerant waveforms, we applied direct sequence spread spectrum (DSSS) coding techniques to linear frequency modulated (LFM) signals. The resulting transmitted waveforms are rendered orthogonal using a unique spread spectrum code. At the receiver, the echo signal can be decoded using its spreading code. In this manner, …


Developing A Practical Wireless Monitoring Solution For A Size-Constrained, Low-Power, Biomechanical, Sports Telemetry System, Jeffery Ray King Oct 2014

Developing A Practical Wireless Monitoring Solution For A Size-Constrained, Low-Power, Biomechanical, Sports Telemetry System, Jeffery Ray King

Open Access Theses

As sport-related concussions become more prevalent, the ability to quickly and reliably assess brain injury risk is increasingly essential. Commercially-available systems exist with the goal of assessing the risk of traumatic brain injury in athletes in real-time. These systems utilize a pre-determined acceleration threshold, discarding all captured information below this arbitrary threshold. The use of an event-based model to assess the risk of traumatic brain injury has been shown to be inadequate. Therefore, these systems falsely promote "accurate" real-time communication of risk. Research conducted by the Purdue Neurotrauma Group (PNG) seeks to advance the field by developing a biomechanical sports …


Application Of Integer Quadratic Programming To Detection Of High-Dimensional Wireless Systems, Jamal Yousuf Alsawalhi Oct 2014

Application Of Integer Quadratic Programming To Detection Of High-Dimensional Wireless Systems, Jamal Yousuf Alsawalhi

Open Access Dissertations

This work introduces a novel permanent-magnet synchronous machine (PMSM) architecture that employs rotational asymmetry to increase the torque density output in constant power variable speed applications. A population based multi-objective design optimization algorithm is used to design and analyze the new machine topology. A number of design studies are presented to show that the proposed machine structure outperforms a conventional PMSM machine. Validation of the analytical machine design model using a three dimensional finite element analyses is performed and the results are presented. Finally, a case study in which a hybrid electric bus traction motor is designed is presented.


Theory Of Topological Insulators And Its Applications, Parijat Sengupta Oct 2014

Theory Of Topological Insulators And Its Applications, Parijat Sengupta

Open Access Dissertations

An important pursuit in semiconductor physics is to discover new materials to sustain the continuous progress and improvements in the current electronic devices. Traditionally, three material types are in use: 1) Metals 2) Semiconductors 3) Insulators. All the three material types are classified according to the energy gap between conduction and valence bands derived from band theory of solids. Recent theoretical predictions and confirmed by experimental observations have provided evidence that there exists materials which behave as insulators in the bulk but possess gapless conducting states on the surface. These new class of materials are called topological insulators (TI). In …