Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Development Of Micro-Hall Devices For Current Sensing, Thomas White Dec 2014

Development Of Micro-Hall Devices For Current Sensing, Thomas White

Graduate Theses and Dissertations

In this work, micro-Hall devices were developed for the purpose of sensing current within a high temperature and high power environment. GaAs HEMT, InGaAs pHEMT, and GaN HEMT structures were studied. These structures were grown by molecular beam epitaxy. Processing techniques including photolithography, metallization, Si deposition, wet etching, and dry etching were studied. Electrical characterization measurements including low frequency noise, Hall effect, sensitivity, capacitance-voltage, and current-voltage were performed.

Electron mobility and sheet carrier density studies were performed for both the InGaAs pHEMT and GaAs HEMT structures. Results indicated the InGaAs pHEMT was superior and thus fabricated as the micro-Hall device. …


An Analytical And Experimental Biosensor For Human Mig Using Algan/Gan Based Hemt Devices, Hector Trevino Ii May 2014

An Analytical And Experimental Biosensor For Human Mig Using Algan/Gan Based Hemt Devices, Hector Trevino Ii

Theses and Dissertations - UTB/UTPA

An amperometric biosensor using AlGaN/GaN based HEMT devices is constructed experimentally and validated through analytical and numerical techniques for detection of a key protein in allograft rejection (Human MIG/CXCL9). The prototype developed provides a reliable sensing platform that will allow label-free and marker-free detection. By exploiting characteristics unique to AlGaN/GaN based HEMT devices, a floating gate configuration is employed to allow reliable sensing without the need for any reference electrode. Self-assembled monolayers (SAM) are formed at the gate surface by using a crosslinker (DSP) to allow for appropriate immobilization of target antibodies. A theoretical analytical and numerical model is developed …


Investigation Of Degradation Effects Due To Gate Stress In Gan-On-Si High Electron Mobility Transistors Through Analysis Of Low Frequency Noise, Michael Curtis Meyer Masuda Mar 2014

Investigation Of Degradation Effects Due To Gate Stress In Gan-On-Si High Electron Mobility Transistors Through Analysis Of Low Frequency Noise, Michael Curtis Meyer Masuda

Master's Theses

Gallium Nitride (GaN) high electron mobility transistors (HEMT) have superior performance characteristics compared to Silicon (Si) and Gallium Arsenide (GaAs) based transistors. GaN is a wide bandgap semiconductor which allows it to operate at higher breakdown voltages and power. Unlike traditional semiconductor devices, the GaN HEMT channel region is undoped and relies on the piezoelectric effect created at the GaN and Aluminum Gallium Nitride (AlGaN) heterojunction to create a conduction channel in the form of a quantum well known as the two dimensional electron gas (2DEG). Because the GaN HEMTs are undoped, these devices have higher electron mobility crucial for …


Optical Characterization Of Ingan Heterostructures For Blue Light Emitters And Vertical Cavity Lasers: Efficiency And Recombination Dynamics, Serdal Okur Jan 2014

Optical Characterization Of Ingan Heterostructures For Blue Light Emitters And Vertical Cavity Lasers: Efficiency And Recombination Dynamics, Serdal Okur

Theses and Dissertations

OPTICAL CHARACTERIZATION OF INGAN HETEROSTRUCTURES FOR BLUE LIGHT EMITTERS AND VERTICAL CAVITY LASERS: EFFICIENCY AND RECOMBINATION DYNAMICS

By Serdal Okur, Ph.D.

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2014.

Major Director: Ümit Özgür, Associate Professor, Electrical and Computer Engineering

This thesis explores radiative efficiencies and recombination dynamics in InGaN-based heterostructures and their applications as active regions in blue light emitters and particularly vertical cavities. The investigations focus on understanding the mechanism of efficiency loss at high injection as well as developing designs to mitigate …


Quantum Efficiency Enhancement For Gan Based Light-Emitting Diodes And Vertical Cavity Surface-Emitting Lasers, Fan Zhang Jan 2014

Quantum Efficiency Enhancement For Gan Based Light-Emitting Diodes And Vertical Cavity Surface-Emitting Lasers, Fan Zhang

Theses and Dissertations

This thesis explores the improvement of quantum efficiencies for InGaN/GaN heterostructures and their applications in light-emitting diodes (LEDs) and vertical cavity surface-emitting lasers (VCSELs). Different growth approaches and structural designs were investigated to identify and address the major factors limiting the efficiency. (1) Hot electron overflow and asymmetrical electron/hole injection were found to be the dominant reasons for efficiency degradation in nitride LEDs at high injection; (2) delta p-doped InGaN quantum barriers were employed to improve hole concentration inside the active region and therefore improve hole injection without sacrificing the layer quality; (3) InGaN active regions based on InGaN multiple …