Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Novel Method For Broadband On-Chip Noise Characterization, Mohammad Ghadiri Sadrabadi Nov 2014

Novel Method For Broadband On-Chip Noise Characterization, Mohammad Ghadiri Sadrabadi

Masters Theses

A novel method for on-chip noise characterization of mm-wave circuits is presented. Different available methods for noise measurements and requirements for on-chip noise mea-surements are studied. The Y-factor method is chosen to be the more suitable method for in-situ applications since it does not require absolute measurements. A state of the art CMOS noise source is implemented in 32nm SOI CMOS technology to enable the in-situ noise measurements of a 20-35 GHz reconfigurable low noise amplifier. Measurement results show that the ENR of the noise source is repeatable enough so that the calibration of the noise source is only required …


Propagation Prediction Over Random Rough Surface By Zeroth Order Induced Current Density, Narayana Srinivasan Balu Nov 2014

Propagation Prediction Over Random Rough Surface By Zeroth Order Induced Current Density, Narayana Srinivasan Balu

Masters Theses

Electromagnetic wave propagation over random sea surfaces is a classical problem of interest for the Navy, and significant research has been done over the years. Here we make use of numerical and analytical methods to predict the propagation of microwaves over random rough surface. The numerical approach involves utilization of the direct solution (using Volterra integral equation of the second kind) to currents induced on a rough surface due to forward propagating waves to compute the scattered field. The mean scattered field is computed using the Monte-Carlo method. Since the exact solution (consisting of an infinite series) to induced current …


Impedance Measurement Of Small Antennas Over A Ground Plane Without Direct Cable Attachment, Yutong Yang Nov 2014

Impedance Measurement Of Small Antennas Over A Ground Plane Without Direct Cable Attachment, Yutong Yang

Masters Theses

An indirect impedance measurement approach that does not require direct cable attachment or large space using a two-port network is presented. Using a straight wire monopole as an interrogating antenna and measured impedances of three calibration standards, the input impedance of a small spherical helix dipole over a ground plane is retrieved. It is found that accurate result is obtained around the dipole resonance frequency. The accuracy and sources of error are discussed.


Design And Implementation Of A Network Service Marketplace, Yunsheng Qi Nov 2014

Design And Implementation Of A Network Service Marketplace, Yunsheng Qi

Masters Theses

The Internet has successfully served the world for more than three decades, while limitations and drawbacks still exist. A lot of researches have been done on innovation of Internet to address those inadequacies. One approach to improve Internet performance is to make choice as a principle in network architecture. We believe that a service-based network architecture with choice, or we call it ChoiceNet, is the most suitable option for future Internet. In this thesis, we design and implement a network service marketplace. Due to the flexibility and functionality of web application, the marketplace is implemented by a web application to …


Effect Of Clock And Power Gating On Power Distribution Network Noise In 2d And 3d Integrated Circuits, Vinay C. Patil Nov 2014

Effect Of Clock And Power Gating On Power Distribution Network Noise In 2d And 3d Integrated Circuits, Vinay C. Patil

Masters Theses

In this work, power supply noise contribution, at a particular node on the power grid, from clock/power gated blocks is maximized at particular time and the synthetic gating patterns of the blocks that result in the maximum noise is obtained for the interval 0 to target time. We utilize wavelet based analysis as wavelets are a natural way of characterizing the time-frequency behavior of the power grid. The gating patterns for the blocks and the maximum supply noise at the Point of Interest at the specified target time obtained via a Linear Programming (LP) formulation (clock gating) and Genetic Algorithm …


Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings Nov 2014

Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings

Masters Theses

This thesis presents the design of uBot-7, the latest version of a dexterous mobile manipulator. This platform has been iteratively developed to realize a high performance-to-cost dexterous whole body manipulator with respect to mobile manipulation. The semi-anthropomorphic design of the uBot is a demonstrated and functional research platform for developing advanced autonomous perception, manipulation, and mobility tasks. The goal of this work is to improve the uBot’s ability to sense and interact with its environment in order to increase the platforms capability to operate dexterously, through the incorporation of joint torque feedback, and safely, through the implementation of passive and …


Design Of Non-Uniform Linear Array Via Linear Programming And Particle Swarm Optimization And Studies On Phased Array Calibration, Hua Bai Nov 2014

Design Of Non-Uniform Linear Array Via Linear Programming And Particle Swarm Optimization And Studies On Phased Array Calibration, Hua Bai

Masters Theses

For a linear array, the excitation coefficients of each element and its geometry play an important role, because they will determine the radiation pattern of the given array. Side Lobe Level (SLL) is one of the key parameters to evaluate the radiation pattern of the array. Generally speaking, we desire SLL to be as low as possible. For the linear array with uniform spacing, there are some classic methods to calculate the excitation coefficients to make the radiation pattern satisfy the given requirements. For the linear array with non-uniform spacing, linear programming and particle swarm optimization are proposed to calculate …


Millimeter Wave Indium Phosphide Heterojunction Bipolar Transistors: Noise Performance And Circuit Applications, Metin Ayata Nov 2014

Millimeter Wave Indium Phosphide Heterojunction Bipolar Transistors: Noise Performance And Circuit Applications, Metin Ayata

Masters Theses

The performance of III-V heterojunction bipolar transistors (HBTs) has improved significantly over the past two decades. Today’s state of the art Indium Phosphide (InP) HBTs have a maximum frequency of oscillation greater than 800 GHz and have been used to realize an amplifier operating above 600 GHz . In comparison to silicon (Si) based devices, III-V HBTs have superior transport properties that enables a higher gain, higher speed, and noise performance, and much higher Johnson figure- of-merit . From this perspective, the InP HBT is one of the most promising candidates for high performance mixed signal electronic systems.


Design And Evaluation Of An L-Band Current-Mode Class-D Power Amplifier Integrated Circuit, Michael J. Shusta Aug 2014

Design And Evaluation Of An L-Band Current-Mode Class-D Power Amplifier Integrated Circuit, Michael J. Shusta

Masters Theses

Power amplifiers (PAs) convert energy from DC to high frequencies in all radio and microwave transmitter systems be they wireless base stations, handsets, radars, heaters, and so on. PAs are the dominant consumers of energy in these systems and, therefore, the dominant sources of system cost and inefficiency. Research has focused on efficient solid-state PA circuit topologies and their optimization since the 1960s. The 2000s saw the current-mode class-D (CMCD) topology, potentially suitable for today's wireless communications systems, show promise in the UHF frequency band. This thesis describes the design and testing of a high-efficiency CMCD amplifier with an integrated …