Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Cloud-Induced Uncertainty For Visual Navigation, Alyssa N. Gutierrez Dec 2014

Cloud-Induced Uncertainty For Visual Navigation, Alyssa N. Gutierrez

Theses and Dissertations

This research addresses the numerical distortion of features due to the presence of clouds in an image. The research aims to quantify the probability of a mismatch between two features in a single image, which will describe the likelihood that a visual navigation system incorrectly tracks a feature throughout an image sequence, leading to position miscalculations. First, an algorithm is developed for calculating transparency of clouds in images at the pixel level. The algorithm determines transparency based on the distance between each pixel color and the average pixel color of the clouds. The algorithm is used to create a dataset …


Advances In Sca And Rf-Dna Fingerprinting Through Enhanced Linear Regression Attacks And Application Of Random Forest Classifiers, Hiren J. Patel Sep 2014

Advances In Sca And Rf-Dna Fingerprinting Through Enhanced Linear Regression Attacks And Application Of Random Forest Classifiers, Hiren J. Patel

Theses and Dissertations

Radio Frequency (RF) emissions from electronic devices expose security vulnerabilities that can be used by an attacker to extract otherwise unobtainable information. Two realms of study were investigated here, including the exploitation of 1) unintentional RF emissions in the field of Side Channel Analysis (SCA), and 2) intentional RF emissions from physical devices in the field of RF-Distinct Native Attribute (RF-DNA) fingerprinting. Statistical analysis on the linear model fit to measured SCA data in Linear Regression Attacks (LRA) improved performance, achieving 98% success rate for AES key-byte identification from unintentional emissions. However, the presence of non-Gaussian noise required the use …


Hyperfine Interactions In The Electron Paramagnetic Resonance Spectra Of Point Defects In Wide-Band-Gap Semiconductors, Eric M. Golden Sep 2014

Hyperfine Interactions In The Electron Paramagnetic Resonance Spectra Of Point Defects In Wide-Band-Gap Semiconductors, Eric M. Golden

Theses and Dissertations

The focus of this research was to acquire definitive experimental data on predominant point defects in three important wide-band-gap semiconductors. Hyperfine interactions in electron paramagnetic resonance spectra were used to characterize the neutral nitrogen acceptor in zinc oxide, to identify a silicon interstitial impurity in titanium dioxide, and to determine the electronic structure of the singly ionized sulfur vacancy in stannous hexathiohypodiphosphate (SPS). Research on the basic properties of these technologically important materials plays a crucial role in the development of advanced optical and electronic systems. Zinc oxide is an electro-optic material with the potential to produce high performance electronics …


Scalable System Design For Covert Mimo Communications, Jason R. Pennington Jun 2014

Scalable System Design For Covert Mimo Communications, Jason R. Pennington

Theses and Dissertations

In modern communication systems, bandwidth is a limited commodity. Bandwidth efficient systems are needed to meet the demands of the ever-increasing amount of data that users share. Of particular interest is the U.S. Military, where high-resolution pictures and video are used and shared. In these environments, covert communications are necessary while still providing high data rates. The promise of multi-antenna systems providing higher data rates has been shown on a small scale, but limitations in hardware prevent large systems from being implemented.


Proton Damage Effects On Carbon Nanotube Field-Effect Transistors, Evan R. Kemp Jun 2014

Proton Damage Effects On Carbon Nanotube Field-Effect Transistors, Evan R. Kemp

Theses and Dissertations

This research investigated the effects of proton damage on single-walled carbon nanotube (SWCNT) transistors. The transistors were irradiated by 1.8 MeV protons to determine the damage induced in the SWCNTs and the device substrate using Raman spectroscopy, and to observe the effect on transistor functionality by measuring current-voltage characteristics. Irradiation of the SWCNT transistors to a fluence of 1x1013 protons/cm2 resulted in 67% increase in the Raman D/G peak intensity ratio, while at a fluence of 2x1013 protons/cm2 the increase in the D/G ratio was only 18%, likely due to radiation annealing. Current-voltage measurements indicated an …


Characterization And Performance Comparison Of Low-Voltage, High-Speed, Push-Pull And Traveling-Wave Silicon Mach-Zehnder Modulators, Tristan A. Latchu Mar 2014

Characterization And Performance Comparison Of Low-Voltage, High-Speed, Push-Pull And Traveling-Wave Silicon Mach-Zehnder Modulators, Tristan A. Latchu

Theses and Dissertations

The well-known power and memory walls are recognized as the current bottlenecks in computing performance, and with the increasing computational load of commonly run applications, it is necessary to nd ways to alleviate the issues presented by the aforementioned bottlenecks. It is therefore necessary to not focus solely on extracting performance improvement by way of changes to the processing architecture, but rather by holistically improving the computing platform, namely the communications backbone. This work focuses on the characterization and performance comparison of two families of optical data modulators, both fundamentally Mach{Zehnder modulators (MZMs); namely, a modulator with a Push-Pull (PP) …


Blind Demodulation Of Pass Band Ofdma Signals And Jamming Battle Damage Assessment Utilizing Link Adaptation, Nicholas A. Rutherford Mar 2014

Blind Demodulation Of Pass Band Ofdma Signals And Jamming Battle Damage Assessment Utilizing Link Adaptation, Nicholas A. Rutherford

Theses and Dissertations

This research focuses on blind demodulation of a pass band OFDMA signal so that jamming effectiveness can be assessed; referred to in this research as BDA. The research extends, modifies and collates work within literature to perform a new method of blindly demodulating of a passband OFDMA signal, which exhibits properties of the 802.16 Wireless MAN OFDMA standard, and presents a novel method for performing BDA via observation of SC LA. Blind demodulation is achieved by estimating the carrier frequency, sampling rate, pulse shaping filter roll off factor, synchronization parameters and CFO. The blind demodulator's performance in AWGN and a …


Contact Resistance Evolution And Degradation Of Highly Cycled Micro-Contacts, Christopher L. Stilson Mar 2014

Contact Resistance Evolution And Degradation Of Highly Cycled Micro-Contacts, Christopher L. Stilson

Theses and Dissertations

Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This thesis reports the contact resistance evolution results and fabrication of thin film micro-contacts dynamically tested up to 3kHz. …


Selectively Tuning A Buckled Si/Sio2 Membrane Mems Through Joule Heating Actuation And Mechanical Restriction, Kyle K. Ziegler Mar 2014

Selectively Tuning A Buckled Si/Sio2 Membrane Mems Through Joule Heating Actuation And Mechanical Restriction, Kyle K. Ziegler

Theses and Dissertations

This research followed previous work and attempted to modify the spring in two ways. First, a Ti/Au meander resistor was deposited atop the membrane in an effort to actuate the membrane and change the spring constant. Secondly, a series of overhanging cantilevers were attached to the bulk substrate surrounding the membrane in an effort to constrain the membrane buckling deflection to the negative stiffness region. Membrane buckling was investigated through Finite Element analysis (FEA) and analytical equations. Deflections were measured using an interferometric microscope (IFM) and force/deflection measurements were captured using a unique measurement scheme. The results concluded that by …


An Experimental Evaluation Of Image Quality For Various Scenarios In A Chromotomographic System With A Spinning Prism, Kyle J. Dufaud Mar 2014

An Experimental Evaluation Of Image Quality For Various Scenarios In A Chromotomographic System With A Spinning Prism, Kyle J. Dufaud

Theses and Dissertations

A lab and eld based hyperspectral chromotomographic imager has been developed at the Air Force Institute of Technology. It is a prototype used to study the requirements for a space-based system. The imager uses a high speed visible band camera behind a direct-vision prism to image both spatial dimensions and the spectral dimension at the same time. Capturing all 3 simultaneously allows for the hyperspectral imaging of transient events. The prism multiplexes the spectral and spatial information, so tomographic reconstruction algorithms must be used to separate hyperspectral channels. Experiments were conducted to compare reconstructed image quality as a function of …


Memristive Responses Of Jammed Granular Copper Array Sensors To Mechanical Stress, Gary A. Willey Mar 2014

Memristive Responses Of Jammed Granular Copper Array Sensors To Mechanical Stress, Gary A. Willey

Theses and Dissertations

A granular memristive device with the end goal of creating a novel system protection device is introduced in a 1-Dimension array. The electromechanical network will lay the groundwork for future 2-Dimensional and 3-Dimensional devices for simultaneous protection from intrusion. Off the shelf copper spheres with diameter of 710 ± 11microns were found through nano-indentation measurements to have elastic modulus of 106GPa, and compressive yield strength of 729MPa, these spheres were prepared for test in a 1-Dimensional array device. The arrays response to mechanical perturbations modeled by Hertz contact mechanics can be monitored by simultaneous electrical measurements across the multiple metal-insulator-metal …


Gps Multipath Reduction With Correlator Beamforming, Jason M. Barhorst Mar 2014

Gps Multipath Reduction With Correlator Beamforming, Jason M. Barhorst

Theses and Dissertations

This research effort investigates the feasibility of beamforming using a single Global Positioning System (GPS) front end. Traditional methods of beamforming use multiple front ends, typically one per antenna element. By enabling a receiver to sample a switched antenna array, the hardware cost of implementing a GPS antenna array can be significantly reduced. Similar techniques of reducing the number of receivers have been used by Locata Corporation in the design of their non-GPS positioning systems. However, Locata Corporation's local transmitters provide a signal strength much higher than GPS's signal strength. For this reason, the inclusion of low-noise amplifiers into the …


Electrical Characterization Of Spherical Copper Oxide Memristive Array Sensors, James P. Orta Mar 2014

Electrical Characterization Of Spherical Copper Oxide Memristive Array Sensors, James P. Orta

Theses and Dissertations

A new System Protection (SP) technology is explored by using electrical and mechanical interference-sensing devices that are implemented with granular memristive material. The granular materials consist of oxide-coated copper spheres with radii of about 700 µm that are placed in contact to produce thin oxide junctions which exhibit memristive behavior. Processes for etching, which compared acetic acid and nitric acid etches, and thermal oxidation at 100°C are performed and compared to produce copper spheres with a copper oxide layer over the sphere surface. Oxidized copper spheres are tested as sensor arrays by loading into a capillary tube in an aligned …


Airborne Wireless Communication Modeling And Analysis With Matlab, Matthew J. Vincie Mar 2014

Airborne Wireless Communication Modeling And Analysis With Matlab, Matthew J. Vincie

Theses and Dissertations

Over the past decade, there has been a dramatic increase in the use of unmanned aerial vehicles (UAV) for military, commercial, and private applications. Critical to maintaining control and a use for these systems is the development of wireless networking systems [1]. Computer simulation has increasingly become a key player in airborne networking developments though the accuracy and credibility of network simulations has become a topic of increasing scrutiny [2-5]. Much of the inaccuracies seen in simulation are due to inaccurate modeling of the physical layer of the communication system. This research develops a physical layer model that combines antenna …


Bayesian Methods And Confidence Intervals For Automatic Target Recognition Of Sar Canonical Shapes, Richard W. Rademacher Mar 2014

Bayesian Methods And Confidence Intervals For Automatic Target Recognition Of Sar Canonical Shapes, Richard W. Rademacher

Theses and Dissertations

This research develops a new Bayesian technique for the detection of scattering primitives in synthetic aperture radar (SAR) phase history data received from a sensor platform. The primary goal of this research is the estimation of size, position, and orientation parameters defined by the “canonical” shape primitives of Jackson. Previous Bayesian methods for this problem have focused on the traditional maximum a posteriori (MAP) estimate based on the posterior density. A new concept, the probability mass interval, is developed. In this technique the posterior density is partitioned into intervals, which are then integrated to form a probability mass over that …


Opportunistic Access In Frequency Hopping Cognitive Radio Networks, Ethan S. Hennessey Mar 2014

Opportunistic Access In Frequency Hopping Cognitive Radio Networks, Ethan S. Hennessey

Theses and Dissertations

Researchers in the area of cognitive radio often investigate the utility of dynamic spectrum access as a means to make more efficient use of the radio frequency spectrum. Many studies have been conducted to find ways in which a secondary user can occupy spectrum licensed to a primary user in a manner which does not disrupt the primary user's performance. This research investigates the use of opportunistic access in a frequency hopping radio to mitigate the interference caused by other transmitters in a contentious environment such as the unlicensed 2.4 GHz region. Additionally, this work demonstrates how dynamic spectrum access …