Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Constructing And Optimizing A Single Wafer Solar Cell Array In The Microfabrication Lab At California Polytechnic State University At San Luis Obispo, Rod Marstell Jul 2013

Constructing And Optimizing A Single Wafer Solar Cell Array In The Microfabrication Lab At California Polytechnic State University At San Luis Obispo, Rod Marstell

Master's Theses

CONSTRUCTING AND OPTIMIZING A SINGLE WAFER SOLAR CELL ARRAY IN THE MICROFABRICATION LAB AT CALIFORNIA POLYTECHNIC STATE UNIVERSITY AT SAN LUIS OBISPO

Solar cells are more and more becoming a significant source of energy in the world today. They are used to power entire buildings as well as small devices and everything in between, and are utilized all around the world. Smaller solar devices, such as hearing aid battery chargers, cost a lot of money relative to the monetary wealth in third-world countries. For this purpose, a less expensive, more efficient solar cell array should be developed.

This study contains …


New Application For Indium Gallium Zinc Oxide Thin Film Transistors: A Fully Integrated Active Matrix Electrowetting Microfluidic Platform, Jiyong Noh May 2013

New Application For Indium Gallium Zinc Oxide Thin Film Transistors: A Fully Integrated Active Matrix Electrowetting Microfluidic Platform, Jiyong Noh

Doctoral Dissertations

The characterization and fabrication of active matrix TFTs [Thin Film Transistors] have been studied for applying an addressable microfluidic electrowetting channel device. The a-IGZO [Amorphous Indium Gallium Zinc Oxide] is used for electronic switching device to control the microfluidic device because of its high mobility, transparency, and easy to fabrication. The purpose of this dissertation is to optimize each IGZO TFT process including the optimization of a-IGZO properties to achieve robust device for application. To drive the IGZO TFTs, the channel resistance of IGZO layer and contact resistance between IGZO layer and source/drain (S/D) electrode are discussed in this dissertation. …


Fabrication And Characterization Of Si(1-X)Ge(X) Semiconductor Alloy For Sensor Applications, Daniel Aaron Schaeffer May 2013

Fabrication And Characterization Of Si(1-X)Ge(X) Semiconductor Alloy For Sensor Applications, Daniel Aaron Schaeffer

Masters Theses

Si1-xGex [Si(1-x)Ge(x)] semiconductor alloys have emerged as materials with many important applications in the electronic industry due to its tunable electronic, optical, and physical properties. It has been studied and analyzed for the fabrication of high-speed micro electronics (e.g., SiGe heterojunction bipolar transistors (HBT) and high electron mobility field effect transistors) and thermo-photovoltaics (e.g., photodetectors, solar cells, thermoelectric power generators and temperature sensors). Other applications of Si1-xGex include tunable neutron and x-ray monochromators and γ- ray [gamma-ray] detectors. In these applications, the Si1-xGex alloy is generally used in the form of …


Carbon Nitride And Conjugated Polymer Composite Materials, Josh Byers Mar 2013

Carbon Nitride And Conjugated Polymer Composite Materials, Josh Byers

Electronic Thesis and Dissertation Repository

The semiconductor and photovoltaic properties of carbon nitride (CNx) thin films prepared using a reactive magnetron sputtering technique were investigated both individually and as composites with the organic conjugated polymers polybithiophene (PBT) and poly(3-hextlthiophene) (P3HT). At low nitrogen content, the film structure was dominated by graphitic sp2 percolation networks, whereas at higher nitrogen contents CNx films started to demonstrate semiconductor properties, as evidenced by the occurrence of photoconductivity and the development of a space charge region. When CNx was deposited onto a PBT substrate, it was found to function as an acceptor material improving the photocurrent generation both in …


The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell Jan 2013

The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell

Electronic Theses and Dissertations

Cubic Zn1-xMgxO (c-Zn1-xMgxO) thin films have opened the deep ultraviolet (DUV) spectrum to exploration by oxide optoelectronic devices. These extraordinary films are readily wet-etch-able, have inversion symmetric lattices, and are made of common and safe constituents. They also host a number of new exciting experimental and theoretical challenges. Here, the relation between growth conditions of the c-Zn1-xMgxO film and performance of fabricated ultraviolet (UV) sensors is investigated. Plasma-Enhanced Molecular Beam Epitaxy was used to grow Zn1-xMgxO thin films and formation conditions were explored by varying the growth temperature, Mg source flux, oxygen flow rate, and radio-frequency (RF) power coupled into …


High Resistivity Amorphous Selenium Alloy Semiconductors For Radiation Detection Applications, Abhinav Mehta Jan 2013

High Resistivity Amorphous Selenium Alloy Semiconductors For Radiation Detection Applications, Abhinav Mehta

Theses and Dissertations

High resolution noninvasive tools of diagnosis has always derived and enabled scientific and medical research to probe and better understand subtleties of matter, intangible to the human eye. Radiation detection systems are highly dependent on advancements in materials and devices with front-end electronics. There are various discrete applications of these radiation detectors and each application imposes certain requirements so there is no single optimum radiation detector.

Flat panel x-ray imagers have gained high demand in the past decade because of exponential improvement in readout electronics. We have synthesized and investigated stabilized amorphous selenium (a-Se) alloys suitable for high resolution flat …