Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Synthesis And Characterization Of Diamond-Like Carbon Thin Films For Biomedical Applications, Russell Lee Leonard Dec 2010

Synthesis And Characterization Of Diamond-Like Carbon Thin Films For Biomedical Applications, Russell Lee Leonard

Masters Theses

Diamond-like carbon (DLC) thin films were produced by pulsed laser deposition (PLD) on silicon, fused silica, and silicon nitride substrates. The films produced were either undoped, made using a pure graphite target, or doped, using multi-component targets made from a combination of graphite and silicon, silicon nitride, titanium dioxide, or silicon monoxide. These films were evaluated for their potential use in biomedical applications, including coatings for artificial joints, heart stents, and bronchoscopes. The films were characterized by Raman spectroscopy, atomic force microscopy, ball-on-flat tribometry, contact angle measurements, and spectrophotometry. Film thickness was determined by optical profilometry. Film adhesion was checked …


Mesophase Pitch-Based Carbon Fiber And Its Composites: Preparation And Characterization, Chang Liu Dec 2010

Mesophase Pitch-Based Carbon Fiber And Its Composites: Preparation And Characterization, Chang Liu

Masters Theses

The objective of this study is to investigate the relationship among process, structure, and property of the UTSI pitch-based carbon fibers and optimize carbon fiber’s mechanical properties through the stabilization process. Various analysis techniques were employed throughout these investigations which include the Scanning Electron Microscope (SEM), optical microscope, Dia-stron system, MTS, and ImageJ.

Several fiber process techniques including fiber spinning, stabilization, and carbonization were explored to determine the effect of the thermal process on the fiber yield, fiber diameter, the sheath-core structure of stabilized fibers, the pac-man and hollow core structures of carbonized fibers, and the resulting mechanical properties of …


Composite Suspension For Formula Sae Vehicle, Reid Olsen, Andrew Bookholt, Eric Melchiori Jun 2010

Composite Suspension For Formula Sae Vehicle, Reid Olsen, Andrew Bookholt, Eric Melchiori

Mechanical Engineering

This senior project report describes how a redesign of the 2008 Cal Poly Formula SAE vehicle's suspension components was conducted using carbon fiber components.


Feasibility Study Of Lightweight High-Strength Hollow Core Balsa-Frp Composite Beams Under Flexure, Kevin O'Neill Jan 2010

Feasibility Study Of Lightweight High-Strength Hollow Core Balsa-Frp Composite Beams Under Flexure, Kevin O'Neill

Electronic Theses and Dissertations

The United States of America's Military, more specifically the Army, has since the late 1990's had a vested interest in the development of super-lightweight, portable, short-span composite bridge and decking components to replace aging heavy metal-alloy machine driven modular systems. The following study looks at the feasibility of using balsa wood as the structural core material in fiber reinforced polymer (FRP) wrapped hollow-core composites in short-span bridge applications. The balsa provides shear resistance and the FRP the flexural resistance, resulting in extremely high strength-to-weight and strength-to-depth ratios. Several scaled short span specimens were constructed and tested using a variety of …


Mechanical Properties Of Carbon Nanotube/Metal Composites, Ying Sun Jan 2010

Mechanical Properties Of Carbon Nanotube/Metal Composites, Ying Sun

Electronic Theses and Dissertations

Carbon nanotubes (CNTs) have captured a great deal of attention worldwide since their discovery in 1991. CNTs are considered to be the stiffest and strongest material due to their perfect atomic arrangement and intrinsic strong in-plane sp 2—sp 2 covalent bonds between carbon atoms. In addition to mechanical properties, CNTs have also shown exceptional chemical, electrical and thermal properties. All these aspects make CNTs promising candidates in the development of novel multi-functional nanocomposites. Utilizing CNTs as fillers to develop advanced nanocomposites still remains a challenge, due to the lack of fundamental understanding of both material processing at the nanometer scale …