Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo Dec 2016

Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo

Open Access Dissertations

Thermal barrier coatings (TBCs) are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The current state-of-art TBC material is yttria-stabilized zirconia (YSZ), whose service temperature is limited to 1200 celsius, due to sintering and phase transition at higher temperatures. In comparison, lanthanum zirconate (La2Zr2O7, LZ) has become a promising candidate material for TBCs due to its lower thermal conductivity and higher phase stability compared to YSZ.

The primary objective of this thesis is to design a novel robust LZ-based TBC system suitable for applications beyond 1200 celsius. Due to LZ’s low …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya Dec 2016

Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya

Open Access Dissertations

Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy …


Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares Dec 2016

Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares

Open Access Dissertations

In this work, the ability to use high frequency mechanical excitation to generate significant heating within plastic bonded explosives, as well as single energetic particles embedded within a viscoelastic binder, is studied. In this work, the fundamental mechanisms associated with the conversion of high-frequency mechanical excitation to heat as applied to these composite energetic systems are thoroughly investigated.

High-frequency contact excitation has been used to generate a significant amount of heat within samples of PBX 9501 and representative inert mock materials. Surface temperature rises on the order of 10 °C were observed at certain frequencies over a range from 50 …


Bridge Maintenance To Enhance Corrosion Resistance And Performance Of Steel Girder Bridges, Luis M. Moran Yanez Dec 2016

Bridge Maintenance To Enhance Corrosion Resistance And Performance Of Steel Girder Bridges, Luis M. Moran Yanez

Open Access Dissertations

The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. …


Modeling Fluid Interactions With The Rigid Mush In Alloy Solidification, Alexander J. Plotkowski Aug 2016

Modeling Fluid Interactions With The Rigid Mush In Alloy Solidification, Alexander J. Plotkowski

Open Access Dissertations

Macrosegregation is a casting defect characterized by long range composition differences on the length scale of the ingot. These variations in local composition can lead to the development of unwanted phases that are detrimental to mechanical properties. Unlike microsegregation, in which compositions vary over the length scale of the dendrite arms, macrosegregation cannot be removed by subsequent heat treatment, and so it is critical to understand its development during solidification processing. Due to the complex nature of the governing physical phenomena, many researchers have turned to numerical simulations for these predictions, but properly modeling alloy solidification presents a variety of …


Fabrication And Characterization Of Cellulose Nanocrystal Enhanced Sustainable Polymer Nanocomposites Through Surface Chemistry And Processing, Shane X. Peng Aug 2016

Fabrication And Characterization Of Cellulose Nanocrystal Enhanced Sustainable Polymer Nanocomposites Through Surface Chemistry And Processing, Shane X. Peng

Open Access Dissertations

Cellulose nanocrystals (CNCs) belong to a class of cellulose based nanomaterials that are extracted from renewable and sustainable sources and have excellent mechanical and thermal properties. While applications for CNCs have been expanding, one of the challenges of utilizing CNCs is to overcome their low dispersibility in hydrophobic polymers. In the present work, several approaches are utilized to improve the interfacial compatibility and overall performance of CNC/epoxy and CNC/polyamide nanocomposite.

For a two-part epoxy system, a novel approach was taken to disperse CNC in epoxy matrix by pre-formulating CNC into the hardeners. Three types of hardeners were evaluated for their …


Nanoparticle-Based Electrochemical Sensors For The Detection Of Lactate And Hydrogen Peroxide, Aytekin Uzunoglu Aug 2016

Nanoparticle-Based Electrochemical Sensors For The Detection Of Lactate And Hydrogen Peroxide, Aytekin Uzunoglu

Open Access Dissertations

In the present study, electrochemical sensors for the detection of lactate and hydrogen peroxide were constructed by exploiting the physicochemical properties of metal ad metal oxide nanoparticles. This study can be divided into two main sections. While chapter 2, 3, and 4 report on the construction of electrochemical lactate biosensors using CeO2 and CeO2-based mixed metal oxide nanoparticles, chapter 5 and 6 show the development of electrochemical hydrogen peroxide sensors by the decoration of the electrode surface with palladium-based nanoparticles. First generation oxidase enzyme-based sensors suffer from oxygen dependency which results in errors in the response current of the sensors …


Modeling Transport Phenomena And Uncertainty Quantification In Solidification Processes, Kyle S. Fezi Aug 2016

Modeling Transport Phenomena And Uncertainty Quantification In Solidification Processes, Kyle S. Fezi

Open Access Dissertations

Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport …


Modeling Picking On Pharmaceutical Tablets, Shrikant Swaminathan Aug 2016

Modeling Picking On Pharmaceutical Tablets, Shrikant Swaminathan

Open Access Dissertations

Tablets are the most popular solid dosage form in the pharmaceutical industry because they are cheap to manufacture, chemically and mechanically stable and easy to transport and fairly easy to control dosage. Pharmaceutical tableting operations have been around for decades however the process is still not well understood. One of the common problems faced during the production of pharmaceutical tablets by powder compaction is sticking of powder to the punch face, This is known as 'sticking'. A more specialized case of sticking is picking when the powder is pulled away form the compact in the vicinity of debossed features. In …


Energy Transfer And Localization In Molecular Crystals, Mitchell A. Wood May 2016

Energy Transfer And Localization In Molecular Crystals, Mitchell A. Wood

Open Access Dissertations

With the aim of developing new technologies for the detection and defeat of energetic materials, this collection of work was focused on using simulations to characterize materials at extremes of temperature, pressure and radiation. Each branch of the work here is collected by which material response is potentially used as the detectable signal.

Where the chemical response is of interest, this work will explore the possibility of non-statistical chemical reactions in condensed-phase energetic materials via reactive molecular dynamics (MD) simulations. We characterize the response of three unique high energy density molecular crystals to different means of energy input: electric fields …


Analytical And Experimental Investigation Of Microstructural Alterations In Bearing Steel In Rolling Contact Fatigue, Sina Mobasher Moghaddam Mar 2016

Analytical And Experimental Investigation Of Microstructural Alterations In Bearing Steel In Rolling Contact Fatigue, Sina Mobasher Moghaddam

Open Access Dissertations

Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry.

In the current work, an analytical as well as experimental approaches are used to investigate “butterfly wing” formation, crack initiation and propagation from inclusions. A new damage evolution equation coupled with a FE model is employed to account for the effect of mean stresses and alternating stresses simultaneously to investigate butterfly formation. The proposed …