Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Open Access Dissertations

Chemical Engineering

Self-assembly

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri Feb 2013

Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri

Open Access Dissertations

Two diverse projects illustrate the application of various materials characterization techniques to investigate the structure and properties of nanostructured functional materials formed in both bulk as well as in solutions. In the first project, ordered magnetic nanostructures were formed within polymer matrix by novel metallopolymers. The novel metal-functionalized block copolymers (BCPs) enabled the confinement of cobalt metal ions within nanostructured BCP domains, which upon simple heat treatment resulted in room temperature ferromagnetic (RTFM) materials. On the contrary, cobalt functionalized homopolymer having similar chemical structure and higher loading of metal-ion are unstructured and exhibited superparamagnetic (SPM) behavior at room temperature. Based …


Modeling The Self-Assembly Of Ordered Nanoporous Materials, Lin Jin Sep 2012

Modeling The Self-Assembly Of Ordered Nanoporous Materials, Lin Jin

Open Access Dissertations

Porous materials have long been a research interest due to their practical importance in traditional chemical industries such as catalysis and separation processes. The successful synthesis of porous materials requires further understanding of the fundamental physics that govern the formation of these materials. In this thesis, we apply molecular modeling methods and develop novel models to study the formation mechanism of ordered porous materials. The improved understanding provides an opportunity to rational control pore size, pore shape, surface reactivity and may lead to new design of tailor-made materials. To attain detailed structural evolution of silicate materials, an atomistic model with …