Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Atomic Level Study Of Water-Gas Shift Catalysts Via Transmission Electron Microscopy And X-Ray Spectroscopy, Mehmed Cem Akatay Oct 2013

Atomic Level Study Of Water-Gas Shift Catalysts Via Transmission Electron Microscopy And X-Ray Spectroscopy, Mehmed Cem Akatay

Open Access Dissertations

Water-gas shift (WGS), CO + H2 O [Special characters omitted.] CO2 + H2 (ΔH° = -41 kJ mol -1 ), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2 O3 catalystsare employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism.

In this study, the structure of the supported …


Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates Oct 2013

Spectroscopic And Kinetic Study Of Copper-Exchanged Zeolites For The Selective Catalytic Reduction Of Nox With Ammonia, Shane Adam Bates

Open Access Dissertations

The recent application of metal-exchanged, small-pore zeolites for use in the selective catalytic reduction (SCR) of NOx with ammonia NH3 for automotive deNOx applications has been a great stride in achieving emission standard goals. Copper-exchanged SSZ-13 (Cu-SSZ-13), the small-pore zeolite in this study, has been shown to be very hydrothermally stable and active under conditions presented in the exhaust of the lean-burn diesel engine. In this work, detailed studies were performed to identify many aspects of the active site(s) in Cu-SSZ-13 in order to learn about the standard SCR mechanism.

A series of seven Cu-SSZ-13 samples were …


Spectroscopic And Kinetic Characterization Of Catalytic Materials For The Conversion Of Biomass-Derived Compounds, Paul James Dietrich Oct 2013

Spectroscopic And Kinetic Characterization Of Catalytic Materials For The Conversion Of Biomass-Derived Compounds, Paul James Dietrich

Open Access Dissertations

As economies look to transition away from petroleum for social, economic, and political reasons, biomass will continue to attract attention as a renewable feedstock for the fuels and chemicals industry. In order to turn biomass into end use fuels and chemicals, the oxygen content must be lowered significantly, requiring large hydrogen inputs. For these processes to be completely renewable, the hydrogen must come from biomass or biomass-derived compounds. In this work, catalysts for the aqueous phase reforming (APR) of biomass-derived sugars were characterized by a combination of reaction kinetics, X-ray spectroscopy, electron microscopy, and theoretical computation to determine the active …


The Effect Of Composition On The Linear And Nonlinear Mechanical Properties Of Particulate Filled Elastomers, Oluwaseyi Ogebule Oct 2013

The Effect Of Composition On The Linear And Nonlinear Mechanical Properties Of Particulate Filled Elastomers, Oluwaseyi Ogebule

Open Access Dissertations

Engineering elastomers are materials capable of undergoing large deformation upon load application and recovering upon load removal. From car tires to building vibration isolator systems, elastomers are the most versatile of engineering materials. The inclusion of particulate fillers into elastomers enhances their mechanical properties (modulus, tensile strength, toughness, tear resistance, etc) thereby extending their applicability to more demanding functions. The automotive, healthcare, construction, adhesives and consumer products are some of the many industries that produce finished goods containing elastomeric parts.

Despite the various concepts on reinforcement in filled elastomers, a complete understanding of their linear viscoelastic properties and the nonlinear …


Elucidation Of Chiral Recognition Mechanisms Of Solutes By Amylose Tris[(S)-Alpha-Methylbenzylcarbamate] Sorbent, Hung-Wei Tsui Oct 2013

Elucidation Of Chiral Recognition Mechanisms Of Solutes By Amylose Tris[(S)-Alpha-Methylbenzylcarbamate] Sorbent, Hung-Wei Tsui

Open Access Dissertations

Enantioselective separations of chiral molecules are important in various chemical fields, such as pharmaceuticals and agrochemicals industries. Polysaccharide-based sorbents have been widely used in chiral liquid chromatography. The recognition mechanisms which determine their enantioselectivities are not completely understood.

In this dissertation, the chiral recognition mechanisms of a widely used commercial sorbent, amylose tris[(S)-alpha-methylbenzylcarbamate], for benzoin (B) enantiomers were first studied. The HPLC data for benzoin with pure n-hexane as the mobile phase have been obtained. The behavior of sorbent-solute-hexane systems can be interpreted by considering only sorbent solute two-component interactions. Infrared (IR) spectra showed evidence of substantial hydrogen bonding (H-bonding) …


Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav Oct 2013

Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav

Open Access Dissertations

Thermoelectric devices and lithium-ion batteries are among the fastest growing energy technologies. Thermoelectric devices generate energy from waste heat, whereas lithium-ion batteries store energy for use in commercial applications. Two different topics are bound with a common thread in this thesis - nanotechnology! In fact, nanostructuring is a more preferred term for the approach I have taken herein. Another commonality between these two topics is the material system I have used to prove my hypotheses - complex metal oxides.

Complex metal oxides can be used for both energy generation and storage as they are stable at high temperatures, are benign …


Development Of Quantitative Ft- Ir Methods For Analyzing The Cure Kinetics Of Epoxy Resins, Sang Ha Son Oct 2013

Development Of Quantitative Ft- Ir Methods For Analyzing The Cure Kinetics Of Epoxy Resins, Sang Ha Son

Open Access Dissertations

Epoxy thermosets are important engineering materials with applications in coating, adhesives, packaging and as structural components in a variety of advanced engineering products. The ultimate performance of polymer critically depends upon the details of the cure chemistry used to produce the thermoset. In order to better understand and monitor the cure chemistry, quantitative analysis of the FT-IR response has been developed for describing the epoxy-amine curing reaction as well as monitoring the hydrogen bonding that occurs in these systems The FT-IR analysis includes (i) quantitative deconvolution of complex peaks into individual spectral contributions, (ii) peak identification via DFT analysis and …


Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang Oct 2013

Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang

Open Access Dissertations

Photo-induced water splitting of water into H2 and O2 has been a major focus in the development of clean and renewable energy. The development of viable and efficient catalysts that facilitates O2 production remains the major challenge in the study of the corresponding half-reaction of water oxidation. There are plenty of metal oxides reported active in the catalysis of water oxidation. However, several important performance bench marks of those materials, such as the non-stoichiometric production of O2, slow reaction rate and/or low quantum efficiency, remain to be improved.

Ruthenium oxide (RuO2) has long been known as one of the most …


High-Pressure Vapor-Phase Catalytic Hydrodeoxygenation Of Lignin-Derived Compounds To Hydrocarbons On Bimetallic Catalysts In The Range Of 0.2-2.4 Mpa., Sara Lynn Yohe Oct 2013

High-Pressure Vapor-Phase Catalytic Hydrodeoxygenation Of Lignin-Derived Compounds To Hydrocarbons On Bimetallic Catalysts In The Range Of 0.2-2.4 Mpa., Sara Lynn Yohe

Open Access Dissertations

Biomass, as the only renewable source of carbon, presents a sustainable alternative to liquid fossil fuels for the production of renewable transportation fuels and chemicals. The lignin portion of biomass poses a significant challenge in the upgrading and conversion of lignocellulosic biomass to fuels and chemicals, and in many current biorefineries is not utilized. However, the lignin fraction is a valuable feedstock due to its aromatic structure, lower O:C ratio than cellulose and hemicellulose, and high energy content (up to 40%) and weight fraction (average 25 wt%) of biomass. Several processes (including fast-pyrolysis, fast-hydropyrolysis, and liquid phase processing) are able …


Comprehensive Computational Modeling Of Hypergolic Propellant Ignition, Swanand Vijay Sardeshmukh Oct 2013

Comprehensive Computational Modeling Of Hypergolic Propellant Ignition, Swanand Vijay Sardeshmukh

Open Access Dissertations

Ignition and combustion of hypergolic propellants mono-methyl hydrazine (MMH) and red fuming nitric acid (RFNA) is investigated computationally. A hierarchical approach is chosen to study parametric behavior of isolated processes and complex interactions thereof, in this transient phenomenon. Starting with a homogeneous reactor, performance of three reduced kinetic mechanisms is assessed first, followed by the study of auto-ignition delay as a function of initial composition and thermal state of the mixture. Macroscopic features as well as the structure of opposed diffusion flame are studied next, followed by the study of opposed liquid jets and the gas layer at the interface. …


Energy Systems Analysis For A Solar Economy, Dharik Sanchan Mallapragada Oct 2013

Energy Systems Analysis For A Solar Economy, Dharik Sanchan Mallapragada

Open Access Dissertations

The use of solar energy for human needs faces challenges owing to its relatively low energy intensity and intermittent availability, coupled with the constrained availability of renewable carbon and land resources. This study uses systems analysis tools to identify carbon and energy efficient transformations of solar energy for different purposes, including transportation fuels and grid-scale energy storage. These efforts have been complemented with a feasibility analysis of existing fossil-energy and other hybrid pathways.

In an era of limited fossil resources, liquid fuels from sustainably available (SA) biomass could meet the energy needs of the transportation sector. We present a method …


An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan Oct 2013

An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan

Open Access Dissertations

The successful utilization of lignocellulosic biomass as a feedstock for fuels and chemicals necessitates storage for 2-6 months. It is correspondingly important to understand the impact of storage parameters - moisture concentration, temperature and duration - on biomass quality.

As aerobic storage is the most viable large-scale solution, aerobic storage experiments were carried out with three projected bioenergy feedstocks - sweet sorghum (Sorghum bicolor) bagasse, corn (Zea mays) stover and switchgrass (Panicum virgatum). Stored samples of each were examined for dry matter loss and composition change to develop a material balance around carbohydrates and lignin.

A mean dry matter loss …


Bending, Wrinkling, And Folding Of Thin Polymer Film/Elastomer Interfaces, Yuri Ebata Sep 2013

Bending, Wrinkling, And Folding Of Thin Polymer Film/Elastomer Interfaces, Yuri Ebata

Open Access Dissertations

This work focuses on understanding the buckling deformation mechanisms of bending, wrinkling, and folding that occur on the surfaces and interfaces of polymer systems. We gained fundamental insight into the formation mechanism of these buckled structures for thin glassy films placed on an elastomeric substrate. By taking advantage of geometric confinement, we demonstrated new strategies in controlling wrinkling morphologies. We were able to achieve surfaces with controlled patterned structures which will have a broad impact in optical, adhesive, microelectronics, and microfluidics applications.

Wrinkles and strain localized features, such as delaminations and folds, are observed in many natural systems and are …


Discriminatory Bio-Adhesion Over Nano-Patterned Polymer Brushes, Saugata Gon Sep 2013

Discriminatory Bio-Adhesion Over Nano-Patterned Polymer Brushes, Saugata Gon

Open Access Dissertations

Surfaces functionalized with bio-molecular targeting agents are conventionally used for highly-specific protein and cell adhesion. This thesis explores an alternative approach: Small non-biological adhesive elements are placed on a surface randomly, with the rest of the surface rendered repulsive towards biomolecules and cells. While the adhesive elements themselves, for instance in solution, typically exhibit no selectivity for various compounds within an analyte suspension, selective adhesion of targeted objects or molecules results from their placement on the repulsive surface. The mechanism of selectivity relies on recognition of length scales of the surface distribution of adhesive elements relative to species in the …


Dynamic Modeling Of Synthetic Microbial Consortia To Optimize The Co-Fermentation Of Glucose And Xylose, Timothy Joseph Hanly Sep 2013

Dynamic Modeling Of Synthetic Microbial Consortia To Optimize The Co-Fermentation Of Glucose And Xylose, Timothy Joseph Hanly

Open Access Dissertations

Second-generation biofuels have the potential to replace fossil fuels in the energy economy without negatively impacting the food supply. An effective biocatalyst must be able to convert all sugars found in lignocellulosic hydrolysates to biofuels. Few microbes exist in that have both a wide substrate range and high ethanol yields necessary for this process. Mixed culture biotechnology is a promising alternative to the use of single organisms in the production of fuels from lignocellulosic biomass. These systems mimic natural processes for the degradation of lignocellulose and exploit the native capabilities of each microbe. The segregation of metabolic pathways allows for …


Evaluation Of A Split-Root Nutrition System To Optimize Nutrition Of Basil, Ganisher Djurakulovich Abbasov Sep 2013

Evaluation Of A Split-Root Nutrition System To Optimize Nutrition Of Basil, Ganisher Djurakulovich Abbasov

Open Access Dissertations

The plant-nutrient-water optimum interaction always has been a problematic program for plant growth and development. This work investigates this interaction using a split root nutrition system to determine possible changes in traditional hydroponics to enhance plant growth and development. While split root nutrition systems have been used experimentally to answer some specific questions, the technique has never been used in a production system for optimizing plant, nutrient, and water interaction. The introduction of hydroponics almost a hundred fifty years ago has not changed this situation fundamentally. Moreover, the norm of fertilizer application on agricultural crops has the advantage of increased …


Scaling Reversible Adhesion In Synthetic And Biological Systems, Michael David Bartlett Sep 2013

Scaling Reversible Adhesion In Synthetic And Biological Systems, Michael David Bartlett

Open Access Dissertations

Geckos and other insects have fascinated scientists and casual observers with their ability to effortlessly climb up walls and across ceilings. This capability has inspired high capacity, easy release synthetic adhesives, which have focused on mimicking the fibrillar features found on the foot pads of these climbing organisms. However, without a fundamental framework that connects biological and synthetic adhesives from nanoscopic to macroscopic features, synthetic mimics have failed to perform favorably at large contact areas. In this thesis, we present a scaling approach which leads to an understanding of reversible adhesion in both synthetic and biological systems over multiple length …


Computer Simulation Of Viral-Assembly And Translocation, Jyoti Prakash Mahalik May 2013

Computer Simulation Of Viral-Assembly And Translocation, Jyoti Prakash Mahalik

Open Access Dissertations

We investigated four different problems using coarse grained computational models : self-assembly of single stranded (ss) DNA virus, ejection dynamics of double stranded(ds) DNA from phages, translocation of ssDNA through MspA protein pore, and segmental dynamics of a polymer translocating through a synthetic nanopore. In the first part of the project, we investigated the self-assembly of a virus with and without its genome. A coarse-grained model was proposed for the viral subunit proteins and its genome (ssDNA). Langevin dynamics simulation, and replica exchange method were used to determine the kinetics and energetics of the self-assembly process, respectively. The self-assembly follows …


Solution Assembly Of Conjugated Polymers, Felicia Bokel May 2013

Solution Assembly Of Conjugated Polymers, Felicia Bokel

Open Access Dissertations

This dissertation focuses on the solution-state polymer assembly of conjugated polymers with specific attention to nano- and molecular-scale morphology. Understanding how to control these structures holds potential for applications in polymer-based electronics. Optimization of conjugated polymer morphology was performed with three objectives: 1) segregation of donor and acceptor materials on the nanometer length-scale, 2) achieving molecular-scale ordering in terms of crystallinity within distinct domains, and 3) maximizing the number and quality of well-defined donor/acceptor interfaces.

Chapter 1 introduces the development of a mixed solvent method to create crystalline poly(3-hexyl thiophene) (P3HT) fibrils in solution. Chapter 2 describes fibril purification and …


Photo-Reaction Of Copolymers With Pendent Benzophenone, Scott Kenneth Christensen May 2013

Photo-Reaction Of Copolymers With Pendent Benzophenone, Scott Kenneth Christensen

Open Access Dissertations

This dissertation aims to both deepen and broaden our understanding of copolymers with pendent benzophenone (BP) in relation to both established applications and novel directions in materials science. Photo-reaction of these BP copolymers is explored in attempts to achieve three distinct goals: (1) robust and efficiently photo-crosslinkable solid polymer films, (2) photo-reacted polymer blends with disordered bicontinuous nanostructures, and (3) photo-patterned hydrogel materials with environmental UV stability. We begin by investigating the fundamental gelation behavior of solid polymer films, finding BP copolymers to be particularly effective crosslinkable materials. Gelation efficiency can be tuned according to comonomer chemistry, as BP hydrogen …


Particle Behavior On Anisotropically Curved Interfaces, Kathleen Mcennis May 2013

Particle Behavior On Anisotropically Curved Interfaces, Kathleen Mcennis

Open Access Dissertations

This dissertation presents experimental research investigating the behavior of particles on two different types of anisotropically curved liquid interfaces: cylinders and catenoids. The results are compared to the behavior predicted by theoretical models. Several types of liquids and many types of particles were examined. The size scale of the surfaces ranges from microns to millimeters, with nanometer and micron sized particles.

Semi-cylinders, a few hundred microns in diameter, were made by creating a line of liquid on a surface. Three different fluids were used to create the semi-cylinders: Gallium, ionic liquids, and molten polystyrene (PS). Particle behavior on semi-cylinder liquid …


Effect Of Colloidal Interactions On Formation Of Glasses, Gels, Stable Clusters And Structured Films, Anand Kumar Atmuri Feb 2013

Effect Of Colloidal Interactions On Formation Of Glasses, Gels, Stable Clusters And Structured Films, Anand Kumar Atmuri

Open Access Dissertations

Colloidal suspensions are ubiquitous because of their vast industrial and household usage. We demonstrate that interactions between colloidal particles play a crucial role in manipulating the phase behavior and thereby the macroscopic properties of a variety of colloidal materials, including structured films, gels, glasses and stable clusters. First, we examined films comprised of two different colloidal particles and investigated the impact of colloidal interactions in manipulating the extent of segregation in the dried films. A transport model was used to predict the volume fraction profiles of the particles as a function of film thickness, which showed that segregation could be …


Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri Feb 2013

Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri

Open Access Dissertations

Two diverse projects illustrate the application of various materials characterization techniques to investigate the structure and properties of nanostructured functional materials formed in both bulk as well as in solutions. In the first project, ordered magnetic nanostructures were formed within polymer matrix by novel metallopolymers. The novel metal-functionalized block copolymers (BCPs) enabled the confinement of cobalt metal ions within nanostructured BCP domains, which upon simple heat treatment resulted in room temperature ferromagnetic (RTFM) materials. On the contrary, cobalt functionalized homopolymer having similar chemical structure and higher loading of metal-ion are unstructured and exhibited superparamagnetic (SPM) behavior at room temperature. Based …


Particle-Collector Interactions In Nanoscale Heterogeneous Systems, Marina Bendersky Feb 2013

Particle-Collector Interactions In Nanoscale Heterogeneous Systems, Marina Bendersky

Open Access Dissertations

Particle-surface interactions govern a myriad of interface phenomena, that span from technological applications to naturally occurring biological processes.

In the present work, particle-collector DLVO interactions are computed with the grid-surface integration (GSI) technique, previously applied to the computation of particle colloidal interactions with anionic surfaces patterned with O(10 nm) cationic patches. The applicability of the GSI technique is extended to account for interactions with collectors covered with topographical and chemical nanoscale heterogeneity. Surface roughness is shown to have a significant role in the decrease of the energy barriers, in accordance with experimental deposition rates that are higher than those predicted …


Molecular And Population Level Approaches To Understand Taxus Metabolism In Cell Suspension Cultures, Rohan Anil Patil Feb 2013

Molecular And Population Level Approaches To Understand Taxus Metabolism In Cell Suspension Cultures, Rohan Anil Patil

Open Access Dissertations

Plant cell culture is an attractive platform technology for production and supply of important plant derived medicinals. A unique characteristic of plant cells is the ability to grow as multicellular aggregates in suspension. The presence of these non-uniform aggregates results in creation of distinct microenvironments, which can induce variations in cellular metabolism (e.g., growth, oxygen consumption and secondary metabolite synthesis). This heterogeneity can lead to unpredictable and suboptimal performance in large scale bioprocesses. One example is the Taxus cell culture system, which produces a widely used chemotherapeutic drug - paclitaxel (Taxol ®). Despite extensive process engineering efforts which have led …


Helical Ordering In Chiral Block Copolymers, Wei Zhao Feb 2013

Helical Ordering In Chiral Block Copolymers, Wei Zhao

Open Access Dissertations

The phase behavior of chiral block copolymers (BCPs*), namely, BCPs with at least one of the constituent block is formed by chiral monomers, is studied both experimentally and theoretically. Specifically, the formation of a unique morphology with helical sense, the H* phase, where the chiral block forms nanohelices hexagonally embedded in the matrix of achiral block, is investigated. Such unique morphology was first observed in the cast film of polystyrene-b-poly(L-lactide) (PS-b-PLLA) from a neutral solvent dichloromethane at room temperature with all the nanohelices being left-handed, which would switch to right-handed if the PLLA block changes to …


Determining Detailed Reaction Kinetics For Nitrogen-And Oxygen-Containing Fuels, Nicole Jeanne Labbe Feb 2013

Determining Detailed Reaction Kinetics For Nitrogen-And Oxygen-Containing Fuels, Nicole Jeanne Labbe

Open Access Dissertations

With the emergence of new biorenewable transportation fuels, the role of heteroatoms in combustion has increased tremendously. While petroleum-based fuels are primarily hydrocarbons, many biorenewable fuels contain heteroatoms such as oxygen and nitrogen, introducing new challenges associated with toxic emissions. A fundamental understanding of the chemical kinetics of combustion of these heteroatomic fuels is necessary to elucidate the pathways by which these toxic emissions are formed and may be achieved through the development of combustion models. Reaction sets, the core of these combustion models, may be assembled for individual fuels through a balance of employing vetted rate constants from prior …