Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

The Design Of An Optimized Patient-Specific In Vivo Spinal Fusion Cage Using Additive Manufacturing, Gorman Donnelly Jun 2015

The Design Of An Optimized Patient-Specific In Vivo Spinal Fusion Cage Using Additive Manufacturing, Gorman Donnelly

Honors Theses

This project involved the design of an all-in-one patient-specific lumbar spinal fusion cage using Direct Metal Laser Sintering (DMLS) manufacturing. The cage is zero-profile and does not need the use of supplemental fixation. It was manufactured out of the titanium alloy Ti 6Al-4V using a DMLS rapid prototyping machine from a third party company. The endplates of the cage are patient-specific allowing for a larger surface contact area between the cage and the vertebral bodies than most cages on the market. This fosters a more successful fusion as well as decreases surgery time, effectively decreasing recovery time. Different porosity variations …


The Optimization Of Porosity And Pore Patterning For Patient-Specific Ti-6 Al-4v Femur Implants, Stephen Paolicelli Jun 2014

The Optimization Of Porosity And Pore Patterning For Patient-Specific Ti-6 Al-4v Femur Implants, Stephen Paolicelli

Honors Theses

Metastatic bone cancer often arises in the long bones of the body. Taking a patient specific approach by utilizing a customized implant is a superior method of treatment compared to today’s solutions, which often includes amputation. A titanium-alloy femur implant has been optimized by varying pore size, pore pattern, and porosity in order to maximize osseointegration. By maximizing osseointegration, the implant will remain firmly in place for a longer period of time because bone will grow throughout the implant, securing it. In addition, it is important for the bone to behave mechanically like bone. This requires the global elastic modulus …


Measuring The Strain Field Gradients On The Surface Of A Model Human Skull While Axially Loaded To Simulate Head-Loading, Matthew Graveley Jun 2012

Measuring The Strain Field Gradients On The Surface Of A Model Human Skull While Axially Loaded To Simulate Head-Loading, Matthew Graveley

Honors Theses

Head-loading is a means of transporting heavy loads accross rough, rural terrains practiced by many peoples in Third World countries. Years of practicing head-loading is said to result in increase spinal bone density and permantly grooved skulls. The most infamous people who practice head-loading are the porters of Nepal, who carry loads by means of a head sling straped across their foreheads, and South African women, who carry loads directly on their heads. To simulate and measure the instantaneous micro deformations occurring on the surface of the skull due to head-loading, a test procedure has been developed using a plastic …


Mechanical Characterization Of An External Fixator For Use In A Mouse Model, Thomas Albano Jun 2012

Mechanical Characterization Of An External Fixator For Use In A Mouse Model, Thomas Albano

Honors Theses

Understanding the process of bone healing has become a fundamental part of medical research due to the approximately one million fractures which occur annually in the United States. The current methods of fracture fixation which use intramedullary rods, external fixators, and fracture plates are effective but not ideal. These fracture fixation methods can lead to mal-union or non-union due to improper callus formation stemming from inadequate fixation and support. When mal-union and non-union occur, the structural integrity of the bone becomes greatly sacrificed and the patient is left to deal with continual pain. Previous studies have suggested that the mechanical …