Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Strategies For The Stabilization Of Metal Anodes For Li And Na Metal Batteries, Yang Zhao Dec 2018

Strategies For The Stabilization Of Metal Anodes For Li And Na Metal Batteries, Yang Zhao

Electronic Thesis and Dissertation Repository

Li-metal batteries (LMBs) and Na-metal batteries (NMBs) are considered as the promising candidates to replace the conventional Li-ion batteries (LIBs) due to their high theoretical energy density. For LMBs and NMBs, Li metal and Na metal are the ultimate choices to achieve their high energy density due to the high specific capacity, low electrochemical potential and lightweight. However, as alkali metals, both Li and Na metal anodes suffer from serious challenges including 1) Li/Na dendrite formations and short circuits; 2) Low Coulombic efficiency (CE) and poor cycling performance; and 3) Infinite volume changes. This thesis mainly focuses on the design …


Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo Dec 2018

Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo

Electronic Thesis and Dissertation Repository

The current Canadian used nuclear fuel container (UFC) design uses a pressure‑grade carbon steel (CS) vessel with its outer surface coated with a thin layer of copper. One concern regarding the structural integrity of the UFC design is the potential internal corrosion of the CS vessel. Moisture trapped inside a UFC could condense within the gap between the hemispherical head and the cylindrical body of the vessel. The internal UFC environment will be exposed to a continuous flux of ionizing radiation arising from the decay of radionuclides trapped in the used UO2 fuel matrix.

This thesis research project investigates …


Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li Sep 2018

Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li

Electronic Thesis and Dissertation Repository

Tissue engineering aims to regenerate damaged and deceased tissue by combining cells with scaffold made from an appropriate biomaterial and providing a conducive environment to guide cell growth and the formation or regeneration of new tissue or organ. While collagen, an important material of the extracellular matrix (ECM), is a natural choice as a scaffold biomaterial, the conducive environment can only be created by having the ability to control the geometry, organization, structural and mechanical properties of the scaffold. Moreover, degradability and degradation rate control of the scaffold has to be taken into consideration too. In this work, we aim …


Chemical Modification Of Lignin Into Advanced Materials, Soheil Hajirahimkhan Aug 2018

Chemical Modification Of Lignin Into Advanced Materials, Soheil Hajirahimkhan

Electronic Thesis and Dissertation Repository

Fossil fuel resources are being used today for most of humankind’s energy and chemical/material needs. The inevitable demise of these resources has created significant interest in the field of biomass and particularly, lignin valorization. As the world’s second most abundant polymer, more than 98% of the annually produced lignin is under-utilized either as an on-site heat source, or as landfill. Thus, finding practical approaches to modifying this inexpensive sustainable resource into materials of high value can be the next leap in lessening the dependence on fossil fuel resources and thus, developing a sustainable future.

In this thesis, kraft lignin is …


Microinjection Molding Of Carbon Filled Polymer Composites, Shengtai Zhou Aug 2018

Microinjection Molding Of Carbon Filled Polymer Composites, Shengtai Zhou

Electronic Thesis and Dissertation Repository

There has been increasing demand for microparts in the areas of electronics, automotive, biomedical and micro-electro-mechanical systems. Microinjection molding (μIM) is becoming an important technology to fabricate miniature products or components to satisfy the ever-increasing needs of the above industries. Polymers and polymeric composites are ubiquitously adopted as molding materials due to their weight advantage, good processability and excellent resistance to corrosion.

Earlier studies have been primarily focused on the μIM of unfilled thermoplastics; however, microparts with multi-functionalities, such as electrical, thermal and mechanical properties are always accommodated by using multi-functional filler loaded polymer composites. Recently, μIM of carbon nanotubes …


Sources Of Glass Transition Temperature Variation In Poly(Methyl Methacrylate)/Cellulose Composites, Elena Mamycheva Jun 2018

Sources Of Glass Transition Temperature Variation In Poly(Methyl Methacrylate)/Cellulose Composites, Elena Mamycheva

Electronic Thesis and Dissertation Repository

Variation in glass transition temperature (Tg) measured by differential scanning calorimetry (DSC) is addressed, specifically for composites of poly(methyl methacrylate) (PMMA) and freeze-dried cellulose nanocrystals; mortar-and-pestle grinding use for creating solventless PMMA/cellulose nanocomposites is evaluated. Experimentally, solvent-containing and solventless PMMA and PMMA/cellulose composite samples (prepared using mortar-and-pestle grinding, melt-pressing, and acetone addition) were tested by DSC in hermetically-sealed pans using one of two maximum first heating scan temperatures; post-DSC samples were photographed. Mortar-and-pestle-ground cellulose was imaged by Field Emission Scanning Electron Microscopy (FE-SEM). Post-DSC samples had different shapes, some corresponding to greater increases in Tg from first to second heating, …


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian Jun 2018

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is …


Development And Applications Of Polyglyoxylate Self-Immolative Polymers, Bo Fan Apr 2018

Development And Applications Of Polyglyoxylate Self-Immolative Polymers, Bo Fan

Electronic Thesis and Dissertation Repository

Self-immolative polymers (SIPs) are relatively recent class of stimuli-responsive and degradable polymers that have attracted significant attention in the past several years. SIPs consist of polymer backbones and stimuli-responsive end-caps at one or both polymer termini. Upon detection of a stimulus, the decomposition of the end-cap leads to complete end-to-end depolymerization. Polyglyoxylates were introduced as a new class of polyacetal based SIPs by our group in 2014. Compared with other SIPs, polyglyoxylates have two advantages including: 1) readily available monomers and 2) low toxic depolymerization products. These advantages may allow polyglyoxylates to be used in a wide range of applications. …


Mechanical Characterization And Shear Test Comparison For Continuous-Fiber Polymer Composites, Matthew Crossan Apr 2018

Mechanical Characterization And Shear Test Comparison For Continuous-Fiber Polymer Composites, Matthew Crossan

Electronic Thesis and Dissertation Repository

As fiber-reinforced composites continue to be used in a wide-range of high performance structures, more detailed understanding and accurate prediction of stress-strain behaviour is necessary to improving designs and reducing costs. This thesis compares the experimental behaviour of a continuous fiber polymer composite of carbon fiber and epoxy resin using Digital Image Correlation to analytical and theoretical predictions. Furthermore, an in-depth analysis of shear testing methods reveals the advantages and limitations of different testing standards. Finally, the limitations of the Iosipescu Shear test (ASTM 5379) fixture to break high-strain-to-failure composites in comparison to the V-notched Rail Shear Fixture (ASTM 7078) …


Development Of Nanostructures By Atomic And Molecular Layer Deposition, Andrew P. Lushington Apr 2018

Development Of Nanostructures By Atomic And Molecular Layer Deposition, Andrew P. Lushington

Electronic Thesis and Dissertation Repository

Atomic layer deposition (ALD) is a thin film deposition technique that has a rich history of being an enabling technique. This vapor phase deposition process can produce a variety of thin films and nanostructures. ALD is based on sequential, self-limiting reactions and provides angstrom level control over film growth. Furthermore, ALD allows for conformal deposition on high-aspect ratio structures and can provide tunable film composition. As nanotechnology marches forward, the development of nanomaterials has significantly advanced. Additional functionality can be imparted to nanomaterials by using surface modification techniques. Given the advantages of ALD, this technique has become a powerful tool …


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen Apr 2018

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is …


Fabrication And Applications Of Printed And Handwriting Electronics, Tengyuan Zhang Mar 2018

Fabrication And Applications Of Printed And Handwriting Electronics, Tengyuan Zhang

Electronic Thesis and Dissertation Repository

The accelerating arrival of the Internet of Things (IoT) era creates a rapidly growing demand for printed electronic. As a low-cost and green substrate, cellulose paper has become the most attractive choice for the printing of sustainable and disposable electronics. However, manufacture of high quality circuits with high conductivity on cellulose paper remains a challenge due to the substrate’s high porosity and roughness. In this thesis, a method for facile fabrication of hybrid copper-fiber highly conductive features on low-cost cellulose paper with strong adhesion and enhanced bending durability is introduced. With three-dimensional electroless deposition (ELD) of copper, the as-fabricated circuits …


Study On The Surface Features Of Preg-Robbing Carbonaceous Matter During Oxidation Treatment, Mana Pourdasht Mar 2018

Study On The Surface Features Of Preg-Robbing Carbonaceous Matter During Oxidation Treatment, Mana Pourdasht

Electronic Thesis and Dissertation Repository

Carbonaceous gold ores have the ability to adsorb gold (I) cyanide from leach solutions during processing. This phenomenon, known as preg-robbing, is responsible for poor recoveries as the carbonaceous materials of the ore compete with activated carbon used during the leaching and adsorption phase of processing. Chemical oxidation of carbonaceous materials by different reagents has been utilized to investigate and compare the mechanism of Au (CN)2 adsorption onto carbonaceous materials prior to and following the treatment.

The procedure for characterization of the carbonaceous materials (plain and modified) in the sample combines the use of several analytical techniques and test …


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal Feb 2018

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale, hence the …