Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Boise State University Theses and Dissertations

Nanoscience and Nanotechnology

(111)A

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Tensile-Strained Germanium Quantum Dots Grown On Indium Aluminum Arsenide (111)A And (110) By Molecular Beam Epitaxy, Kathryn Eva Sautter May 2021

Tensile-Strained Germanium Quantum Dots Grown On Indium Aluminum Arsenide (111)A And (110) By Molecular Beam Epitaxy, Kathryn Eva Sautter

Boise State University Theses and Dissertations

Molecular beam epitaxy (MBE) enables the growth of semiconductor nanostructures known as tensile-strained quantum dots (TSQDs). The highly tunable nature of TSQD properties means that they are of interest for a wide variety of applications including for infrared (IR) lasers and light-emitting diodes (LEDs), improved tunnel junction efficiency in multijunction solar cell technology, quantum key encryption, and entangled photon emission. In this project, I focus on one of the most technologically important materials, germanium (Ge). Ge has a high gain coefficient, high electron mobility, and low band gap: all excellent properties for optoelectronic applications. Until recently, these technological advantages were …