Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Exploring Soil Microbial Dynamics In Southern Appalachian Forests: A Systems Biology Approach To Prescribed Fire Impacts, Saad Abd Ar Rafie Dec 2023

Exploring Soil Microbial Dynamics In Southern Appalachian Forests: A Systems Biology Approach To Prescribed Fire Impacts, Saad Abd Ar Rafie

Doctoral Dissertations

Prescribed fires in Southern Appalachian forests are vital in ecosystem management and wildfire risk mitigation. However, understanding the intricate dynamics between these fires, soil microbial communities, and overall ecosystem health remains challenging. This dissertation addresses this knowledge gap by exploring selected aspects of this complex relationship across three interconnected chapters.

The first chapter investigates the immediate effects of prescribed fires on soil microbial communities. It reveals subtle shifts in porewater chemistry and significant increases in microbial species richness. These findings offer valuable insights into the interplay between soil properties and microbial responses during the early stages following a prescribed fire. …


Characterization Of Radiotolerance In Potato And Development Of A Gamma Radiation Phytosensor., Robert Graham Sears Dec 2023

Characterization Of Radiotolerance In Potato And Development Of A Gamma Radiation Phytosensor., Robert Graham Sears

Doctoral Dissertations

As humans pursue space travel and nuclear energy, the risk of harm from ionizing radiation increases. On Earth or in space, plants are essential to our personal and environmental health. Plants serve as sentinels, bioremediators and food sources in areas of high ionizing radiation, therefore it is essential to understand how ionizing radiation affects plant biology. This work aimed to understand plant responses to ionizing radiation in the potato chassis and apply that knowledge to generate novel phenotypes for nuclear energy and space applications. The first gamma radiation phytosensor was developed for monitoring at standoff distances greater than three meters. …


Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang Aug 2022

A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang

Doctoral Dissertations

With the ongoing pandemic, there have been increasing concerns recently regarding major public health issues such as abuse of organophosphorus compounds, pathogenic bacterial infections, and biosecurity in agricultural production. Biosensors have long been considered a kernel technology for next-generation diagnostic solutions to improve food safety and public health. Significant amounts of effort have been devoted to inventing novel sensing mechanisms, modifying their designs, improving their performance, and extending their application scopes. However, the reliability and selectivity of most biosensors still have much to be desired, which holds back the development and commercialization of biosensors, especially for on-site and point-of-care (POC) …


Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan May 2022

Crowd Control: Regulating The Spatial Organization Of Biopolymers And Gene Expression By Macromolecular Crowding, Gaurav Chauhan

Doctoral Dissertations

The intracellular environment is crowded with macromolecules that can occupy a significant fraction of the cellular volume. This can give rise to attractive depletion interactions that impact the conformations and interactions of biopolymers, as well as their interactions with confining surfaces. We used computer simulations to study the effects of crowding on biologically-inspired models of polymers. We showed that crowding can lead to attractive interactions between two flexible ring polymers, and we further characterized the adsorption of both flexible and semiflexible polymers onto confining surfaces. These results indicate that crowding-induced depletion interactions could play a role in the spatial organization …


Design And Development Of The Urban Population Health Observatory To Improve Disease Surveillance And Response, Whitney Brakefield May 2022

Design And Development Of The Urban Population Health Observatory To Improve Disease Surveillance And Response, Whitney Brakefield

Doctoral Dissertations

Chronic and infectious diseases have a profound impact on the quality and length of life of populations that suffer from these conditions. Scientists, physicians, and health officials are seeking innovative approaches to decrease the morbidity and mortality of deadly diseases. Incorporating artificial intelligence and data science techniques across the health science domain could improve disease surveillance, intervention planning, and policymaking. In this dissertation, we describe the design and development of the Urban Population Health Observatory (UPHO), an explainable knowledge-based multimodal big data analytics platform. A common challenge for conducting multimodal big data analytics is integrating multidimensional heterogeneous data sources, which …


Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith May 2022

Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith

Doctoral Dissertations

Nanoparticles have been of interest to the pharmaceutical industry since the 1980s. The first FDA approved nanoparticle-based therapies included liposomal anesthesia agents. Since then, the amount of FDA-approved nanoparticle therapies remains low. This is because nanoparticle-patient interactions can be very complex and are not well understood. Complicating factors also include increasing obesity rates among the patient population and many small animal pre-clinical trials are completed with healthy, lean animals. The biochemical differences between lean and obese patients prevents early studies from accurately predicting nanoparticle clinical behaviors. Many nanoparticles fail in trails. In this thesis, I aimed to uncover how nanoparticles …


Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor May 2022

Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor

Doctoral Dissertations

The world’s energy demands are projected to increase by nearly 50% by the year 2040, and consumption of carbon-based fuels continues to release greenhouse gases such as carbon dioxide and methane into the atmosphere. This has been causally linked with climate change and increased extreme weather events, which has been further linked to adverse health outcomes and negative effects on biodiversity, food security, and increased disease transmission. Clearly, there is a need for a sustainable, carbon-free, and cost-effective method of energy production to meet growing energy production demands. The sun irradiates Earth’s surface annually with ~80,000 terawatts (TW), making solar …


Chemistry And Functionality Of Plant Waxes: Applications Toward Postharvest Coatings, Francisco Miguel Angel Leyva Gutierrez May 2022

Chemistry And Functionality Of Plant Waxes: Applications Toward Postharvest Coatings, Francisco Miguel Angel Leyva Gutierrez

Doctoral Dissertations

The cuticle of all higher-plants is covered in lipidic layers of amorphous and crystalline waxes. The chemical composition and structure of cuticular waxes impart numerous functional properties to the surfaces of plants. Moreover, plant waxes are valuable industrial products with myriad applications; the postharvest coating of agricultural commodities for preservation serves as a salient example. There is an unfulfilled need in the agricultural sector for alternative wax materials to reduce reliance on imported waxes of botanical origin. Plant waxes are inherently complex mixtures composed of n-alkanes, as well as aliphatic alcohols, aldehydes, fatty acids, ketones, esters, and derivatives thereof. …


Biofabricated Constructs Of Carbon-Based Nanoparticles With Mesenchymal Stem Cells For Orthopedic Repair, Steven D. Newby May 2021

Biofabricated Constructs Of Carbon-Based Nanoparticles With Mesenchymal Stem Cells For Orthopedic Repair, Steven D. Newby

Doctoral Dissertations

Breakthroughs in tissue engineering are moving at a rapid rate especially in the regenerative bone biofabrication. Technology growth in the field of additive manufacturing (AM) such 3D bioprinting which provides the ability to create biocompatible 3D construct on which a cell source could be seeded is an encouraging substitute to autologous grafts.

This present research aims to biofabricate a construct for bone tissue engineering using AM technology. The biocompatible material was chosen corresponding to bones extracellular matrix (ECM) composition, which demonstrates an inorganic and organic development phase: Poly (lactic-glycolic acid) was chosen as the polymeric matrix of the compound, due …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted Dec 2020

Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted

Doctoral Dissertations

Studies that estimate more than 90% of bacteria subsist in a biofilm state to survive environmental stressors. These biofilms persist on man-made and natural surfaces, and examples of the rich biofilm diversity extends from the roots of bioenergy crops to electroactive biofilms in bioelectrochemical reactors. Efforts to optimize microbial systems in the bioeconomy will benefit from an improved fundamental understanding of bacterial biofilms. An understanding of these microbial systems shows promise to increase crop yields with precision agriculture (e.g. biosynthetic fertilizer, microbial pesticides, and soil remediation) and increase commodity production yields in bioreactors. Yet conventional laboratory methods investigate these micron-scale …


Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks Dec 2017

Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks

Doctoral Dissertations

Phosphorylated myo-inositol compounds including inositol phosphates (InsPs) as well as the phosphatidylinositol polyphosphate lipids (PIPns) are critical biomolecules that regulate many of the most important biological processes and pathways. They are aberrant in many disease states due to their regulatory function. The same is true of the phospholipid phosphatidylserine (PS) which can serve as a marker to begin apoptosis. However, the full scope of activities of these structures is not clear, particularly since techniques that enable global detection and analysis of the production of these compounds spatially and temporally are lacking. With all of these obstacles in …


Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis Aug 2017

Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis

Doctoral Dissertations

Bioelectrochemical systems are an emerging technology capable of utilizing aqueous waste streams generated during biomass conversion of lignocellulosic feedstocks to produce valuable co-products and thus, have potential to be integrated into biorefineries. In a microbial electrolysis cell, organic compounds are converted to electrons, protons, and CO2 by fermentative and exoelectrogenic bacteria in the anode compartment. By having the ability to extract electrons from waste streams, these systems can treat water while also producing hydrogen, and thus can improve the efficiency of biomass to fuel production by minimizing external hydrogen requirement and enabling water recycle. The overall goal of this …


Ecology Of Organohalide-Respiring Dehalococcoides Mccartyi: Corrinoid Cofactor-Related Community Interactions And Controls Over Strain Selection, Burcu Şimşir Dec 2016

Ecology Of Organohalide-Respiring Dehalococcoides Mccartyi: Corrinoid Cofactor-Related Community Interactions And Controls Over Strain Selection, Burcu Şimşir

Doctoral Dissertations

Organohalides such as tetrachloroethene (PCE) and trichloroethene (TCE) are among the most prevalent toxic groundwater contaminants. Remediation of organohalide-contaminated sites has high priority, and efficient and cost-effective remedies are needed to prevent environment and human exposure through contaminated water. Bacterial organohalide-respiration plays a major role in organohalide detoxification. Dehalococcoides mccartyi (Dhc) are key mediators in bioremediation, since only Dhc strains have been documented in complete detoxification of chlorinated ethenes to benign ethene. Dhc depends on other microorganisms in the environment for essential growth requirements (e.g., hydrogen and vitamins). For successful implementation of the reductive dechlorination to remediate contaminated …


Bioremediation Of Chlorinated Ethenes: Ph Effects, Novel Dechlorinators And Decision-Making Tools, Yi Yang Dec 2016

Bioremediation Of Chlorinated Ethenes: Ph Effects, Novel Dechlorinators And Decision-Making Tools, Yi Yang

Doctoral Dissertations

Chlorinated solvents have been widely used in different areas of modern society. Usage of these chlorinated solvents was not necessarily accompanied with proper handling and disposal of these hazardous compounds, which caused a variety of environmental problems and continues to affect human health. Remediation of chlorinated ethenes contaminated sites has high priority for state regulators and site owners. Among the available treatment technologies, bioremediation shows great promise as a cost-effective corrective strategy for a variety of environmental pollutants. Prerequisites are that the microbiology involved in contaminant degradation and geochemical factors, such as pH, are understood, so that bioremediation technologies can …


In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson May 2016

In Silico Driven Metabolic Engineering Towards Enhancing Biofuel And Biochemical Production, Richard Adam Thompson

Doctoral Dissertations

The development of a secure and sustainable energy economy is likely to require the production of fuels and commodity chemicals in a renewable manner. There has been renewed interest in biological commodity chemical production recently, in particular focusing on non-edible feedstocks. The fields of metabolic engineering and synthetic biology have arisen in the past 20 years to address the challenge of chemical production from biological feedstocks. Metabolic modeling is a powerful tool for studying the metabolism of an organism and predicting the effects of metabolic engineering strategies. Various techniques have been developed for modeling cellular metabolism, with the underlying principle …


Nanoscaled Cellulose And Its Carbonaceous Material: Application And Local Structure Investigation, Yujie Meng Aug 2015

Nanoscaled Cellulose And Its Carbonaceous Material: Application And Local Structure Investigation, Yujie Meng

Doctoral Dissertations

In this dissertation, cellulose nanocrystals three-dimensional morphology, size distribution, and the crystal structure were statistically and quantitatively investigated. Lognormal distribution was identified as the most likely for cellulose nanocrystals’ size distribution. Height and width dimensions were shown to decrease toward the ends from the midpoint of individual CNCs, implying a spindle-like shape. XRD analysis of crystallite size accompanied with TEM and AFM measurements revealed that the cross-sectional dimensions of individual switchgrass CNC were either rectangular or elliptical shape, with an approximately 3~5 nm [nanometer] lateral element length range. A sponge-like carbon aerogel from microfibril cellulose with high porosity, ultra-low density, …


Design And Development Of Seed Hydration Analyzing Device And Its Utilization In Studying Cereal And Legume Hydration, Vinay Kumar Mannam Dec 2013

Design And Development Of Seed Hydration Analyzing Device And Its Utilization In Studying Cereal And Legume Hydration, Vinay Kumar Mannam

Doctoral Dissertations

Cereals and legumes are important sources of vegetable-based human nutrition. Together they account for 48.6 % of protein and 8.7 % carbohydrate consumption around the world. During preparation, majority of these agricultural staples are re-hydrated to aid in their digestibility, palatability and the bio-availability of the nutrients.

Study of hydration kinetics of cereals and legumes is an important and valuable necessity for industry and academia to understand and gain insights into seed hydration characteristics. An automatic seed hydration analyzing system is developed as a solution for lack of instruments with broad capabilities to study variety of seed properties. The device …


Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce Aug 2013

Toward Direct Biosynthesis Of Drop-In Ready Biofuels In Plants: Rapid Screening And Functional Genomic Characterization Of Plant-Derived Advanced Biofuels And Implications For Coproduction In Lignocellulosic Feedstocks, Blake Lee Joyce

Doctoral Dissertations

Advanced biofuels that are “drop-in” ready, completely fungible with petroleum fuels, and require minimal infrastructure to process a finished fuel could provide transportation fuels in rural or developing areas. Five oils extracted from Pittosporum resiniferum, Copaifera reticulata, and surrogate oils for Cymbopogon flexuosus, C. martinii, and Dictamnus albus in B20 blends were sent for ASTM International biodiesel testing and run in homogenous charge combustion ignition engines to determine combustion properties and emissions. All oils tested lowered cloud point. Oils derived from Copaifera reticulata also lowered indicated specific fuel consumption and had emissions similar to the ultra-low sulfur diesel control. Characterization …


Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput May 2013

Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput

Doctoral Dissertations

Femtosecond laser machining is a direct-write lithography technique by which user-defined patterns are efficiently and rapidly generated at the surface or within the bulk of transparent materials. When femtosecond laser machining is performed with tightly focused amplified pulses in single-pulse mode, transparent substrates like fused silica can be surface patterned with high aspect ratio (>10:1) and deep (>10 μm) nanoholes. The main objective behind this dissertation is to develop single-pulse amplified femtosecond laser machining into a novel technique for the production of fused silica templates with user-defined patterns made of high aspect ratio nanoholes. The size of the …


In Situ Preconcentration By Ac Electrokinetics For Rapid And Sensitive Nanoparticle Detection, Kai Yang Aug 2011

In Situ Preconcentration By Ac Electrokinetics For Rapid And Sensitive Nanoparticle Detection, Kai Yang

Doctoral Dissertations

Reducing cost and time is a major concern in clinical diagnostics. Current molecular diagnostics are multi-step processes that usually take at least several hours or even days to complete multiple reagents delivery, incubations and several washing processes. This highly labor-intensive work and lack of automation could result in reduced reliability and low efficiency. The Laboratory-on-a-chip (LOC), taking advantage of the merger and development of microfluidics and biosensor technology, has shown promise towards a solution for performing analytical tests in a self-contained and compact unit, enabling earlier and decentralized testing. However, challenges are to integrate the fluid regulatory elements on a …


Protein Engineering For The Enhanced Photo-Production Of Hydrogen By Cyanobacterial Photosystem I, Ifeyinwa Jane Iwuchukwu May 2011

Protein Engineering For The Enhanced Photo-Production Of Hydrogen By Cyanobacterial Photosystem I, Ifeyinwa Jane Iwuchukwu

Doctoral Dissertations

Photosystem I (PSI) from plants, algae, and cyanobacteria can mediate H2 evolution in vivo and in vitro. A simple, self-platinization procedure that permits stable PSI-mediated H2 evolution in vitro has been developed. The H2 evolution capabilities of PSI from Thermosynechococcus elongatus have been characterized. This organism utilizes cytochrome c6 (cyt c6) as the e- donor to P700. Using a solution-based, self-organized platinization of the PSI nanoparticles, this study demonstrates a sodium ascorbate-cyt-PSI-Pt-H2 electron transport and proton reduction system that yields light-dependent H2. The system was thermostable with H2 evolution increasing up to 55°C. In addition, stability studies have shown the …


Analysis Of Vehicle Use Patterns During Military Field Exercises To Identify Potential Roads, Chunxia Wu Dec 2005

Analysis Of Vehicle Use Patterns During Military Field Exercises To Identify Potential Roads, Chunxia Wu

Doctoral Dissertations

Military training is an intensive land use and can cause negative environmental effects. Many studies conducted under Integrated Training Area Management (ITAM) for quantifying the impact resulted from the military training exercise found that off-road vehicular activities during training exercises cause the major impact to the training land. Vehicle land use patterns at a certain location affect the impact severity: concentrated and repeated traffic create more serious damage to the land compared to the dispersed offroad vehicle movements. Those areas heavily disturbed by off-road traffic may require a longer period of time or special treatments for the land to return …


X-Ray-Induced Specific-Locus Mutation Rates In Newborn And Young Mice, Paul Bruce Selby Aug 1972

X-Ray-Induced Specific-Locus Mutation Rates In Newborn And Young Mice, Paul Bruce Selby

Doctoral Dissertations

The specific-locus mutation frequency resulting from 300 R of acute X irradiation has been determined for the germ cells present in male mice at 0, 2, 4, 6, 8, 10, 14, 21, 28, and 35 days of age and also for female mice at 0 days of age, Sample size was much larger for the males irradiated on day 0 than for other age groups but in all groups it was large enough to insure that an extremely high rate would be noticed. At 35 days of age the testis is histologically similar to that of the adult. It was …