Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Scatterometry Of 50 Nm Half Pitch Features, Ruichao Zhu Dec 2016

Scatterometry Of 50 Nm Half Pitch Features, Ruichao Zhu

Optical Science and Engineering ETDs

Metrology technologies are an essential adjunct to Integrated Circuit (I.C.) Semiconductor manufacturing. Scatterometry, an optical metrology, was chosen to measure 50 nm half pitch feature structures. A bread-board scatterometry system has been assembled to provide a non-contact, non-destructive, accurate and flexible measurement. A real-time, on-line scatterometry system has also been demonstrated and proven to provide a high throughput measurement.

Three different types of samples have been measured using the scatterometry setup. The wire-grid polarizer (WGP) sample has been made by Jet and Flash Nanoimprint Lithography with ~100 nm pitch and ~50 nm wide ~200 nm tall Al gratings on fused …


Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang Nov 2016

Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang

Chemistry and Chemical Biology ETDs

The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome controlled green fluorescent protein reporter that produce fluorescent signal when the O-ribosome is inhibited. As a proof …


Searching Neuroimaging Biomarkers In Mental Disorders With Graph And Multimodal Fusion Analysis Of Functional Connectivity, Hao He Nov 2016

Searching Neuroimaging Biomarkers In Mental Disorders With Graph And Multimodal Fusion Analysis Of Functional Connectivity, Hao He

Electrical and Computer Engineering ETDs

Mental disorders such as schizophrenia (SZ), bipolar (BD), and major depression disorders (MDD) can cause severe symptoms and life disruption. They share some symptoms, which can pose a major clinical challenge to their differentiation. Objective biomarkers based on neuroimaging may help to improve diagnostic accuracy and facilitate optimal treatment for patients. Over the last decades, non-invasive in-vivo neuroimaging techniques such as magnetic resonance imaging (MRI) have been increasingly applied to measure structure and function in human brains. With functional MRI (fMRI) or structural MRI (sMRI), studies have identified neurophysiological deficits in patients’ brain from different perspective. Functional connectivity (FC) analysis …


Experimental Investigation Of Plasma Dynamics In Jets And Bubbles Using A Compact Coaxial Plasma Gun In A Background Magnetized Plasma, Yue Zhang Nov 2016

Experimental Investigation Of Plasma Dynamics In Jets And Bubbles Using A Compact Coaxial Plasma Gun In A Background Magnetized Plasma, Yue Zhang

Electrical and Computer Engineering ETDs

Numerous solar and astrophysical observations of jet- and bubble-like plasma structures exhibit morphological similarities, suggesting that there may be common plasma physics at work in the formation and evolution processes of these structures at different system scales. The ideal magnetohydrodynamics (MHD) provide the necessary theoretical basis for employing laboratory experiments to investigate key physical processes in nonlinear astrophysical and solar systems, especially when magnetic fields are present.

A coaxial magnetized plasma gun has been designed, installed, and operated in the HelCat linear device at the University of New Mexico. In Region I, a current-driven plasma jet is formed. The plasma …


High Power Optically Pumped Semiconductor Lasers For Sodium Guidestar Applications, Shawn W. Hackett Nov 2016

High Power Optically Pumped Semiconductor Lasers For Sodium Guidestar Applications, Shawn W. Hackett

Optical Science and Engineering ETDs

Optically pumped semiconductor lasers (OPSLs) are shown to provide a much more compact and less expensive source for illumination of the sodium layer of the mesosphere for use as a sodium laser guidestar via single and two photon excitation schemes. This represents a revolution in laser guidestar technology as the cost, size, and power requirements for a laser guidestar system are shown to have been decreased by an order of magnitude with guidestar performance shown to be similar to previous sources. Sodium laser guidestar sources for broadband simultaneous illumination of multiple lines are developed and simulated. Simulations are then compared …


Molecular Tetrapods For Optoelectronic Applications, Jianzhong Yang Nov 2016

Molecular Tetrapods For Optoelectronic Applications, Jianzhong Yang

Chemistry and Chemical Biology ETDs

In this dissertation, several molecular tetrapods were synthesized for optoelectronic applications. In the first two sections, two tetrapodal breakwater-like small molecules: SO and SFBTD were synthesized and characterized. Absorption, X-ray scattering and differential scanning calorimetry experiments indicate crystalline nature of these compounds but slow crystallization kinetics. Solar cells employing SO or SFBTD and phenyl-C61-butyric acid methyl ester (PCBM) were fabricated and evaluated. Relatively low performance was obtained mainly due to the lack of appropriate phase separation, which was caused by molecularly mixed blends with PCBM. The molecularly mixed blends is the result of slow crystallization …