Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Integrating Deep Learning And Augmented Reality To Enhance Situational Awareness In Firefighting Environments, Manish Bhattarai Nov 2020

Integrating Deep Learning And Augmented Reality To Enhance Situational Awareness In Firefighting Environments, Manish Bhattarai

Electrical and Computer Engineering ETDs

We present a new four-pronged approach to build firefighter's situational awareness for the first time in the literature. We construct a series of deep learning frameworks built on top of one another to enhance the safety, efficiency, and successful completion of rescue missions conducted by firefighters in emergency first response settings. First, we used a deep Convolutional Neural Network (CNN) system to classify and identify objects of interest from thermal imagery in real-time. Next, we extended this CNN framework for object detection, tracking, segmentation with a Mask RCNN framework, and scene description with a multimodal natural language processing(NLP) framework. Third, …


Advanced Parallel Algorithms In Computational Electromagnetics, Shu Wang Jul 2020

Advanced Parallel Algorithms In Computational Electromagnetics, Shu Wang

Electrical and Computer Engineering ETDs

The rapid development of high performance computing has pushed the computational electromagnetic(CEM) towards high accuracy, high fidelity and extreme computational scales. There is a great need for existing CEM solvers to have enhanced parallelism and scaling capability. The purpose of this dissertation is to investigate advanced parallel algorithms for both frequency and time domain solvers.

In frequency domain, this work first develop the underpinnings of parallel preconditioning technique and high-order transmission condition in the context of multi-solver scheme. The result is a computing resource-aware and implementation wise compact solver. Then this work targeted at developing efficient algorithms for cases where …


Methods Of Uncertainty Quantification For Physical Parameters, Kellin Rumsey Jul 2020

Methods Of Uncertainty Quantification For Physical Parameters, Kellin Rumsey

Mathematics & Statistics ETDs

Uncertainty Quantification (UQ) is an umbrella term referring to a broad class of methods which typically involve the combination of computational modeling, experimental data and expert knowledge to study a physical system. A parameter, in the usual statistical sense, is said to be physical if it has a meaningful interpretation with respect to the physical system. Physical parameters can be viewed as inherent properties of a physical process and have a corresponding true value. Statistical inference for physical parameters is a challenging problem in UQ due to the inadequacy of the computer model. In this thesis, we provide a comprehensive …


Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann Apr 2020

Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann

Mathematics & Statistics ETDs

This thesis uses a geometric approach to derive and solve nonlinear least squares minimization problems to geolocate a signal source in three dimensions using time differences of arrival at multiple sensor locations. There is no restriction on the maximum number of sensors used. Residual errors reach the numerical limits of machine precision. Symmetric sensor orientations are found that prevent closed form solutions of source locations lying within the null space. Maximum uncertainties in relative sensor positions and time difference of arrivals, required to locate a source within a maximum specified error, are found from these results. Examples illustrate potential requirements …