Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Arkansas, Fayetteville

PDF

Electrical and Computer Engineering

Applied sciences

Articles 1 - 30 of 120

Full-Text Articles in Engineering

Development Of An Oxygen Saturation Monitoring System By Embedded Electronics, Manikandan Venkatesan Gomathy May 2017

Development Of An Oxygen Saturation Monitoring System By Embedded Electronics, Manikandan Venkatesan Gomathy

Graduate Theses and Dissertations

Measuring Oxygenation of blood (SaO2) plays a vital role in patient’s health monitoring. This is often measured by pulse oximeter, which is standard measure during anesthesia, asthma, operative and post-operative recoveries. Despite all, monitoring Oxygen level is necessary for infants with respiratory problems, old people, and pregnant women and in other critical situations.

This paper discusses the process of calculating the level of oxygen in blood and heart-rate detection using a non-invasive photo plethysmography also called as pulsoximeter using the MSP430FG437 microcontroller (MCU). The probe uses infrared lights to measure and should be in physical contact with any peripheral points …


Linear Quadratic Optimal Control For A Cascaded Converters-Based Microgrid, Amlam Niragire May 2017

Linear Quadratic Optimal Control For A Cascaded Converters-Based Microgrid, Amlam Niragire

Graduate Theses and Dissertations

There is a constant transformation of the electric grid due to an ongoing interest in the deployment of renewable energy resources and electric microgrid formation. This transformation, though advantageous in many ways, poses great challenges for the energy industry and there must be a constant improvement in modeling, simulation, analysis and control techniques in order to characterize and optimize the system design and operation. In this light, the scope of this thesis is focused on developing a linear model, analyzing the stability and designing an optimal linear quadratic regulator (LQR) for a microgrid system. The microgrid system used is inspired …


Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido May 2017

Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido

Graduate Theses and Dissertations

Dynamic representations of power systems usually result in the order of hundreds or even thousands of buses. Therefore, reduction of these dynamic representations is convenient. Two applications of model order reduction in power systems are discussed in this thesis. First, Krylov subspace-based method is applied to the IEEE-123 Node Test Feeder in the context of distribution-level power systems simulation. Second, a Balanced Truncation-based model reduction is implemented in the 3-Machine 9-Bus system for designing a power system controller in the context of generation- and transmission-level power systems.

First, for the IEEE-123 Node Test Feeder, a two-sided Arnoldi algorithm is proposed …


Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib May 2017

Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib

Graduate Theses and Dissertations

Proper short-circuit protection in dc distribution systems has provided an austere challenge to researchers as the development of commercially-viable equipment providing fast operation, coordination and reliability still continues. The objective of this thesis is to analyze issues associated with short-circuit protection of low-voltage dc (LVDC) distribution systems and propose a short-circuit protection methodology based on solid-state circuit breakers (SSCBs) that provides fault-current limiting (FCL). Simulation results for a simplified notional 1-kVdc distribution system, performed in MATLAB/SIMULINKTM, would be presented to illustrate that SSCB solutions based on reverse-blocking integrated gate-commutated thyristors (RB-IGCT) are feasible for low-voltage dc distribution systems but requires …


Silicon Germanium Bicmos Comparator Designed For Use In An Extreme Environment Analog To Digital Converter, Benjamin Riley Sissons May 2017

Silicon Germanium Bicmos Comparator Designed For Use In An Extreme Environment Analog To Digital Converter, Benjamin Riley Sissons

Graduate Theses and Dissertations

This thesis demonstrates the process of creating a radiation hardened and extreme temperature operating comparator from start to finish in the 90 nm SiGe 9HP process node. This includes the entire design flow from examining comparator topologies, to designing the initial comparator circuits, to simulating the comparator over a temperature range of -196°C to 125°C, and finally the testing of the fabricated circuit. To verify the circuit would work at low temperatures, several new device models were created that could be used for simulations at -196°C. In addition to its properties as a standalone comparator, the circuit was also used …


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Graduate Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted …


Modeling And Validation Of 4h-Sic Low Voltage Mosfets For Integrated Circuit Design, Shamim Ahmed May 2017

Modeling And Validation Of 4h-Sic Low Voltage Mosfets For Integrated Circuit Design, Shamim Ahmed

Graduate Theses and Dissertations

Silicon Carbide is a promising wide bandgap material and gradually becoming the first choice of semiconductor for high density and high efficiency power electronics in medium voltage range (500-1500V). SiC has also excellent thermal conductivity and the devices fabricated with the material can operate at high temperature (~ 400 ⁰C). Thus, a power electronic system built with SiC devices requires less cooling requirement and saves board space and cost. The high temperature applications of SiC material can also be extended to space exploration, oil and gas rigging, aerospace and geothermal energy systems for data acquisition, sensing and instrumentation and power …


Investigation Of Fes2 Nanoparticles For Use In Optoelectronic And Thermoelectric Applications, Rick Tefal Eyi Nkoghe May 2017

Investigation Of Fes2 Nanoparticles For Use In Optoelectronic And Thermoelectric Applications, Rick Tefal Eyi Nkoghe

Graduate Theses and Dissertations

Iron pyrite (FeS2) is the most abundant sulfide material on earth. This material has been widely investigated by researchers because of its optical properties. However, it has been difficult to produce High efficiency FeS2 based solar cells. This is due to many different impurities that arise when making the materials. The ability to synthesize pure pyrite FeS2 material is therefore critical for applications.

Pure Iron pyrite nanocrystals were synthesized using hot injection by mixing sulfur with an iron precursor in the presence of an amine. To improve the stability, shorter ligands replaced the native amines ligands. The stability of the …


Optimal Sensing And Transmission In Energy Harvesting Sensor Networks, Xianwen Wu Dec 2016

Optimal Sensing And Transmission In Energy Harvesting Sensor Networks, Xianwen Wu

Graduate Theses and Dissertations

Sensor networks equipped with energy harvesting (EH) devices have attracted great attentions recently. Compared with conventional sensor networks powered by batteries, the energy harvesting abilities of the sensor nodes make sustainable and environment-friendly sensor networks possible. However, the random, scarce and non-uniform energy supply features also necessitate a completely different approach to energy management.

A typical EH wireless sensor node consists of an EH module that converts ambient energy to electrical energy, which is stored in a rechargeable battery, and will be used to power the sensing and transmission operations of the sensor. Therefore, both sensing and transmission are subject …


Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris Dec 2016

Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris

Graduate Theses and Dissertations

Lead selenide and lead selenide/lead sulfide core/shell nanocrystals were investigated for use in near infrared photodetectors. A colloidal synthesis method was used for both the core and core/shell configurations. The lead sulfide shell was examined in order to mitigate oxidation of the nanoparticle surface. Absorbance and photoluminescence spectra were measured at room temperature and 77 K, respectively. Transmission electron microscopy images were also obtained to confirm crystallography and size. Bulk lead selenide was simulated in WIEN2k utilizing the linear-augmented plane wave method of solving density functional theory to better understand the electronic structure of PbSe. The crystal structure, electron density, …


Design, Fabrication And Measurement Of A Plasmonic Enhanced Terahertz Photoconductive Antenna, Nathan Matthias Burford Dec 2016

Design, Fabrication And Measurement Of A Plasmonic Enhanced Terahertz Photoconductive Antenna, Nathan Matthias Burford

Graduate Theses and Dissertations

Generation of broadband terahertz (THz) pulses from ultrafast photoconductive antennas (PCAs) is an attractive method for THz spectroscopy and imaging. This provides a wide frequency bandwidth (0.1-4 THz) as well as the straightforward recovery of both the magnitude and phase of the transmitted and/or reflected signals. The achieved output THz power is low, approximately a few microwatts. This is due to the poor conversion of the femtosecond laser used as the optical pump to useable current inside the antenna semiconducting material. The majority of THz power comes from the photocarriers generated within ~ 100 nm distance from the antenna electrodes. …


Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri Dec 2016

Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri

Graduate Theses and Dissertations

Conventional integrated electronics have reached a physical limit, and their efficiency has been influenced by the generated heat in the high-density electronic packages. Integrated photonic circuits based on the highly developed Si complementary-metal-oxide-semiconductor (CMOS) infrastructure was proposed as a viable solution; however, Si-based emitters are the most challenging component for the monolithic integrated photonic circuits. The indirect bandgap of silicon and germanium is a bottleneck for the further development of photonic and optoelectronic integrated circuits.

The Ge1-xSnx alloy, a group IV material system compatible with Si CMOS technology, was suggested as a desirable material that theoretically exhibits a direct bandgap …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill Dec 2016

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill

Graduate Theses and Dissertations

Colloidal lead selenide and lead selenide / lead sulfide core/shell nanocrystals were grown using a wet chemical synthesis procedure. Absorbance and photoluminescence measurements were made to verify the quality of the produced nanocrystals. Absorbance spectra were measured at room temperature, while photoluminescence spectra were measured at 77 K. Organic ligands were exchanged for shorter ligands in order to increase the conductivity of the nanocrystals. Absorption and PL spectra for both core and core/shell nanocrystals were compared. Interdigital photodetector devices with varying channel widths were fabricated by depositing gold onto a glass substrate. Lead selenide nanocrystals were deposited onto these metallic …


Growth Of Gesn And Gepb Alloy Films Using Thermal Evaporator, Hakimah Alahmed Dec 2016

Growth Of Gesn And Gepb Alloy Films Using Thermal Evaporator, Hakimah Alahmed

Graduate Theses and Dissertations

Silicon is the most important semiconductor material used in microelectronic devices. As the number of transistors keep doubling every 24 months (Moore’s law), transistors continue scaling down in size, electrical interconnect is reaching its limits to keep up with the scaling down rate in integrated circuits. These limitations are related to interconnect density and power consumption. Hence, replacing electrical interconnect with optical interconnect on the chip or between chips has the ability to overcome these limitations. However, silicon has poor light emitting efficiency, and other substitutes such as III-V materials are not suitable due to high cost, lattice mismatch, and …


Investigation Of Cnt-Induced Escherichia Coli Lysis And Protein Release, Abdollah Mosleh Aug 2016

Investigation Of Cnt-Induced Escherichia Coli Lysis And Protein Release, Abdollah Mosleh

Graduate Theses and Dissertations

This research investigated the use of carbon nanotubes (CNTs) as a treatment to increase the permeability of a bacterial cell wall. Recombinant Escherichia coli BL21 (DE3) containing a plasmid that expressed Green Fluorescent Protein (GFP) and -lactamase were exposed to CNTs under various levels of agitation for different times. Fluorescence assay for GFP, optical absorbance for -lactamase activity, and Transmission Electron Microscopy (TEM) were used to determine the amount of released protein, and visually examine the permeability enhancement of the cells, respectively. It was found that more -lactamase was present in the culture fluid after treatment with CNTs in a …


Design And Analysis Of An Asynchronous Microcontroller, Michael Hinds Aug 2016

Design And Analysis Of An Asynchronous Microcontroller, Michael Hinds

Graduate Theses and Dissertations

This dissertation presents the design of the most complex MTNCL circuit to date. A fully functional MTNCL MSP430 microcontroller is designed and benchmarked against an open source synchronous MSP430. The designs are compared in terms of area, active energy, and leakage energy. Techniques to reduce MTNCL pipeline activity and improve MTNCL register file area and power consumption are introduced. The results show the MTNCL design to have superior leakage power characteristics. The area and active energy comparisons highlight the need for better MTNCL logic synthesis techniques.


Asynchronous Data Processing Platforms For Energy Efficiency, Performance, And Scalability, Liang Men Aug 2016

Asynchronous Data Processing Platforms For Energy Efficiency, Performance, And Scalability, Liang Men

Graduate Theses and Dissertations

The global technology revolution is changing the integrated circuit industry from the one driven by performance to the one driven by energy, scalability and more-balanced design goals. Without clock-related issues, asynchronous circuits enable further design tradeoffs and in operation adaptive adjustments for energy efficiency. This dissertation work presents the design methodology of the asynchronous circuit using NULL Convention Logic (NCL) and multi-threshold CMOS techniques for energy efficiency and throughput optimization in digital signal processing circuits. Parallel homogeneous and heterogeneous platforms implementing adaptive dynamic voltage scaling (DVS) based on the observation of system fullness and workload prediction are developed for balanced …


Compact Modeling Of Sic Insulated Gate Bipolar Transistors, Sonia Perez Aug 2016

Compact Modeling Of Sic Insulated Gate Bipolar Transistors, Sonia Perez

Graduate Theses and Dissertations

This thesis presents a unified (n-channel and p-channel) silicon/silicon carbide Insulated Gate Bipolar Transistor (IGBT) compact model in both MAST and Verilog-A formats. Initially, the existing MAST model mobility equations were updated using recently referenced silicon carbide (SiC) data. The updated MAST model was then verified for each device tested. Specifically, the updated MAST model was verified for the following IGBT devices and operation temperatures: n-channel silicon at 25 ˚C and at 125 ˚C; n-channel SiC at 25 ˚C and at 175 ˚C; and p-channel SiC at 150 ˚C and at 250 ˚C. Verification was performed through capacitance, DC output …


Modeling And Simulation Of 1700 V 8 A Genesic Superjunction Transistor, Staci E. Brooks Aug 2016

Modeling And Simulation Of 1700 V 8 A Genesic Superjunction Transistor, Staci E. Brooks

Graduate Theses and Dissertations

The first-ever 1.7kV 8A SiC physics-based compact SPICE model is developed for behavior prediction, modeling and simulation of the GeneSiC “Super” Junction Transistor. The model implements Gummel-Poon based equations and adds a quasi-saturation collector series resistance representation from a 1.2 kV, 6 A SiC bipolar junction transistor model developed in Hangzhou, China. The model has been validated with the GA08JT17-247 device data representing both static and dynamic characteristics from GeneSiC. Parameter extraction was performed in IC-CAP and results include plots showing output characteristics, capacitance versus voltage (C-V), and switching characteristics for 25 °C, 125 °C, and 175 °C temperatures.


Channel Estimation Overhead Reduction For Downlink Fdd Massive Mimo Systems, Abderrahmane Mayouche Aug 2016

Channel Estimation Overhead Reduction For Downlink Fdd Massive Mimo Systems, Abderrahmane Mayouche

Graduate Theses and Dissertations

Massive multiple-input multiple-output (MIMO) is the concept of deploying a very large number of antennas at the base stations (BS) of cellular networks. Frequency-division duplexing (FDD) massive MIMO systems in the downlink (DL) suffer significantly from the channel estimation overhead. In this thesis, we propose a minimum mean square error (MMSE)-based channel estimation framework that exploits the spatial correlation between the antennas at the BS to reduce the latter overhead. We investigate how the number of antennas at the BS affects the channel estimation error through analytical and asymptotic analysis. In addition, we derive a lower bound on the spectral …


Validation Of A Confocal Light Sheet Microscope Using Push Broom Translation For Biomedical Applications, Joshua Hutcheson May 2016

Validation Of A Confocal Light Sheet Microscope Using Push Broom Translation For Biomedical Applications, Joshua Hutcheson

Graduate Theses and Dissertations

There exists a need for research of optical methods capable of image cytometry suitable for point-of-care technology. To propose am optical approach with no moving parts for simplification of mechanical components for the further development of the technology to the poin-of-care, a linear sensor with push broom translation method. Push broom translation is a method of moving objects by the sensor for an extended field of view. A polydimethylsiloxane (PDMS) microfluidic chamber with a syringe pump was used to deliver objects by the sensor. The volumetric rate of the pump was correlated to the integration time of the sensor to …


Genotoxicity Of Graphene In Escherichia Coli, Ananya Sharma May 2016

Genotoxicity Of Graphene In Escherichia Coli, Ananya Sharma

Graduate Theses and Dissertations

Rapid advances in nanotechnology necessitate assessment of the safety of nanomaterials in the resulting products and applications. One key nanomaterial attracting much interest in many areas of science and technology is graphene. Graphene is a one atom thick carbon allotrope arranged in a two-dimensional honeycomb lattice. In addition to being extremely thin, graphene has several extraordinary physical properties such as its exceptional mechanical strength, thermal stability, and high electrical conductivity. Graphene itself is relatively chemically inert and therefore pristine graphene must undergo a process called functionalization, which is combination of chemical and physical treatments that change the properties of graphene, …


Correcting Current Imbalances In Three-Phase Four-Wire Distribution Systems, Vinson Joseph Jones May 2016

Correcting Current Imbalances In Three-Phase Four-Wire Distribution Systems, Vinson Joseph Jones

Graduate Theses and Dissertations

The objective of this thesis is to present the theory, design, construction, and testing of a proposed solution to unbalanced current loading on three-phase four-wire systems. The Unbalanced Current Static Compensator is the name of the prototype; herein referred to as the UCSC. The purpose of this prototype is to redistribute current between the three phases of a distribution system. Through this redistribution, negative- and zero-sequence currents are eliminated and a balanced system is seen upstream from the point of installation.

The UCSC consists of three separate single-phase H-bridge inverters that all share the same dc-link capacitor. Each of these …


Design Of An Assistive Technology Adaptive Switch Using An Inertial Measurement Unit, Ethan Storm Williams May 2016

Design Of An Assistive Technology Adaptive Switch Using An Inertial Measurement Unit, Ethan Storm Williams

Graduate Theses and Dissertations

A new assistive technology switch for people with disabilities was developed utilizing an Inertial Measurement Unit (IMU) as the sensor technology. The hardware can be customized through firmware to provide custom switch activations on a person by person basis. The firmware is customized to recognize specific data features in the IMU data which identify the desired switch activation movement performed by the user. In this way, the switch can be adapted to activate based on the movements of the user. During this research, the generic hardware platform, including the IMU sensor technology and Bluetooth communications, was designed and tested. An …


Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism May 2016

Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism

Graduate Theses and Dissertations

UV photodetection devices have many important applications for uses in biological detection, gas sensing, weaponry detection, fire detection, chemical analysis, and many others. Today’s photodetectors often utilize semiconductors such as GaAs to achieve high responsivity and sensitivity. Zinc oxide, unlike many other semiconductors, is cheap, abundant, non-toxic, and easy to grow different morphologies at the micro and nano scale. With the proliferation of these devices also comes the impending need to further study optics and photonics in relation to phononics and plasmonics, and the general principles underlying the interaction of photons with solid state matter and, specifically, semiconductors. For this …


Achieving A Better Balance Between Productivity And Performance On Fpgas Through Heterogeneous Extensible Multiprocessor Systems, Abazar Sadeghian May 2016

Achieving A Better Balance Between Productivity And Performance On Fpgas Through Heterogeneous Extensible Multiprocessor Systems, Abazar Sadeghian

Graduate Theses and Dissertations

Field Programmable Gate Arrays (FPGAs) were first introduced circa 1980, and they held the promise of delivering performance levels associated with customized circuits, but with productivity levels more closely associated with software development. Achieving both performance and productivity objectives has been a long standing challenge problem for the reconfigurable computing community and remains unsolved today. On one hand, Vendor supplied design flows have tended towards achieving the high levels of performance through gate level customization, but at the cost of very low productivity. On the other hand, FPGA densities are following Moore's law and and can now support complete multiprocessor …


High Step-Up/Down Transformerless Multilevel Converter For Renewable Energy Applications, Haider Ghazi Mhiesan May 2016

High Step-Up/Down Transformerless Multilevel Converter For Renewable Energy Applications, Haider Ghazi Mhiesan

Graduate Theses and Dissertations

This thesis focuses on a high step-up/down transformerless dc-dc modular multilevel converter (MMC) that would be applicable to dc power systems. The design achieves high voltage ratios for interfacing renewable energy sources such as photovoltaic and line interactive Uninterruptible Power System (UPS) systems. The circuit topology provides for high step-up/down dc-dc conversion ratios using an MMC approach operating in resonant mode in order to improve overall efficiency. This topology operates to step-up the input voltage with 1:10 or larger conversion ratio. As a bidirectional converter, it also provides step-down capability at the same voltage ratio (10:1 or greater). The MMC …


Experimental And Computational Studies Of Cortical Neural Network Properties Through Signal Processing, Wesley Patrick Clawson May 2016

Experimental And Computational Studies Of Cortical Neural Network Properties Through Signal Processing, Wesley Patrick Clawson

Graduate Theses and Dissertations

Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized …


Control Design Of A Single-Phase Dc/Ac Inverter For Pv Applications, Haoyan Liu May 2016

Control Design Of A Single-Phase Dc/Ac Inverter For Pv Applications, Haoyan Liu

Graduate Theses and Dissertations

This thesis presents controller designs of a 2 kVA single-phase inverter for photovoltaic (PV) applications. The demand for better controller designs is constantly rising as the renewable energy market continues to rapidly grow. Some background research has been done on solar energy, PV inverter configurations, inverter control design, and hardware component selection. Controllers are designed both for stand-alone and grid-connected modes of operation. For stand-alone inverter control, the outer control loop regulates the filter capacitor voltage. Combining the synchronous frame outer control loop with the capacitor current feedback inner control loop, the system can achieve both zero steady-state error and …