Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Efficiently Estimating Survival Signature And Two-Terminal Reliability Of Heterogeneous Networks Through Multi-Objective Optimization, Daniel Bruno Lopes Da Silva Jul 2021

Efficiently Estimating Survival Signature And Two-Terminal Reliability Of Heterogeneous Networks Through Multi-Objective Optimization, Daniel Bruno Lopes Da Silva

Graduate Theses and Dissertations

The two-terminal reliability problem is a classical reliability problem with applications in wired and wireless communication networks, electronic circuit design, computer networks, and electrical power distribution, among other systems. However, the two-terminal reliability problem is among the hardest combinatorial problems and is intractable for large, complex networks. Several exact methods to solve the two-terminal reliability problem have been proposed since the 1960s, but they have exponential time complexity in general. Hence, practical studies involving large network-type systems resort to approximation methods to estimate the system's reliability. One attractive approach for quantifying the reliability of complex systems is to use signatures, …


Reference Design Of An Online Emulation And Hot-Patching Approach For Power Electronic Controller Validation, Estefano Soria Pearson Jul 2021

Reference Design Of An Online Emulation And Hot-Patching Approach For Power Electronic Controller Validation, Estefano Soria Pearson

Graduate Theses and Dissertations

This thesis aims to develop a reference design of an online security system approach embedded in a power electronic controller for cybersecurity purposes. Cybersecurity in power electronics focuses on reducing vulnerabilities in the system, where most reside in the communication with the hardware devices. Although methods to secure communications lessen the probability and effects of cyber-attacks, discovering vulnerabilities is inevitable. This thesis attempts to provide a fail-safe approach to securing the system by targeting the safety of the power-electronic controller. This approach applies an additional security layer in case of a malicious or accidental controller firmware malfunction.

The online security …


Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud Jul 2021

Direct Torque Control For Silicon Carbide Motor Drives, Mohammad Hazzaz Mahmud

Graduate Theses and Dissertations

Direct torque control (DTC) is an extensively used control method for motor drives due to its unique advantages, e.g., the fast dynamic response and the robustness against motor parameters variations, uncertainties, and external disturbances. Using higher switching frequency is generally required by DTC to reduce the torque ripples and decrease stator current total harmonic distortion (THD), which however can lower the drive efficiency. Through the use of the emerging silicon carbide (SiC) devices, which have lower switching losses compared to their silicon counterparts, it is feasible to achieve high efficiency and low torque ripple simultaneously for DTC drives.

To overcome …


The Linear And Non-Linear Relationships Between Peripheral Venous Pressure, Arterial Circulation, And Patient Factors, Lauren Crimmins May 2021

The Linear And Non-Linear Relationships Between Peripheral Venous Pressure, Arterial Circulation, And Patient Factors, Lauren Crimmins

Biomedical Engineering Undergraduate Honors Theses

Peripheral venous pressure (PVP) can be used to measure blood volume status with a minimally invasive procedure. The pediatric cohort undergoing surgery for pyloric stenosis was studied to determine how arterial circulation and patient factors linearly impact PVP. The relationship between PVP and these confounding factors can provide valuable information for future PVP researchers.

To investigate the linear relationship between PVP and electrocardiogram (ECG) the waveforms were transformed into the frequency domain. A power spectral density was plotted, and the Pearson correlation coefficients were calculated for both preoperative and intraoperative settings. Linear regression models were computed for PVP and varying …


Data Forgery Detection In Automatic Generation Control: Exploration Of Automated Parameter Generation And Low-Rate Attacks, Yatish R. Dubasi May 2021

Data Forgery Detection In Automatic Generation Control: Exploration Of Automated Parameter Generation And Low-Rate Attacks, Yatish R. Dubasi

Computer Science and Computer Engineering Undergraduate Honors Theses

Automatic Generation Control (AGC) is a key control system utilized in electric power systems. AGC uses frequency and tie-line power flow measurements to determine the Area Control Error (ACE). ACE is then used by the AGC to adjust power generation and maintain an acceptable power system frequency. Attackers might inject false frequency and/or tie-line power flow measurements to mislead AGC into falsely adjusting power generation, which can harm power system operations. Various data forgery detection models are studied in this thesis. First, to make the use of predictive detection models easier for users, we propose a method for automated generation …


Design And Assembly Of High-Temperature Signal Conditioning System On Ltcc With Silicon Carbide Cmos Circuits, Sajib Roy May 2021

Design And Assembly Of High-Temperature Signal Conditioning System On Ltcc With Silicon Carbide Cmos Circuits, Sajib Roy

Graduate Theses and Dissertations

The objective of the work described in this dissertation paper is to develop a prototype electronic module on a low-temperature co-fired ceramic (LTCC) material. The electronic module would perform signal conditioning of sensor signals (thermocouples) operating under extreme conditions for applications like gas turbines to collect data on the health of the turbine blades during operation so that the turbines do not require shutdown for inspection to determine if maintenance is required. The collected data can indicate when such shutdowns, which cost $1M per day, should be scheduled and maintenance actually performed. The circuits for the signal conditioning system within …


Optoelectronic Valley-Spin Qubits With Ambipolar Quantum Dots, Jeremy Tull May 2021

Optoelectronic Valley-Spin Qubits With Ambipolar Quantum Dots, Jeremy Tull

Electrical Engineering Undergraduate Honors Theses

The current limitations of qubit-based processors are caused by imperfections in quantum gates, leading to a lack of gate fidelity. Gate fidelity can be refined by extending the coherence of qubits and reducing logic operation speed. A potential solution is to develop a hybrid qubit that has the coherence of electrically-controlled quantum dots and the gate speed of their optically-controlled counterparts. Quantum bits that utilize ultrafast optical gating to perform gate operations require precise control of the gating pulse duration. Optical dispersion can cause adverse effects pulse duration, such as pulse broadening, so dispersion-compensation techniques must be employed; by properly …


Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins May 2021

Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins

Mechanical Engineering Undergraduate Honors Theses

According to the CDC, atrial fibrillation is responsible for more than 454,000 hospitalizations and approximately 158,000 deaths per year. A common treatment for atrial fibrillation is catheter ablation, a process in which a long flexible tube is guided through the femoral artery and to the source of arrhythmia in the heart, where it measures the electrical potential at various locations and converts problematic heart tissue to scar tissue via ablation. This paper details the design and control of a low-cost ($400) peristaltic pump system using repetitive control to replicate blood pressure in the left atrium in a conductive silicone model …


An 8-Bit Analog-To-Digital Converter For Battery Operated Wireless Sensor Nodes, Marvin Wayne Suggs Jr. May 2021

An 8-Bit Analog-To-Digital Converter For Battery Operated Wireless Sensor Nodes, Marvin Wayne Suggs Jr.

Graduate Theses and Dissertations

Wireless sensing networks (WSNs) collect analog information transduced into the form of a voltage or current. This data is typically converted into a digital representation of the value and transmitted wirelessly using various modulation techniques. As the available power and size is limited for wireless sensor nodes in many applications, a medium resolution Analog-to-Digital Converter (ADC) is proposed to convert a sensed voltage with moderate speeds to lower power consumption. Specifications also include a rail-to-rail input range and minimized errors associated with offset, gain, differential nonlinearity, and integral nonlinearity. To achieve these specifications, an 8-bit successive approximation register ADC is …