Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Arkansas, Fayetteville

Medicine and Health Sciences

Computer Science and Computer Engineering Undergraduate Honors Theses

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Using Deep Learning To Analyze Materials In Medical Images, Carson Molder May 2021

Using Deep Learning To Analyze Materials In Medical Images, Carson Molder

Computer Science and Computer Engineering Undergraduate Honors Theses

Modern deep learning architectures have become increasingly popular in medicine, especially for analyzing medical images. In some medical applications, deep learning image analysis models have been more accurate at predicting medical conditions than experts. Deep learning has also been effective for material analysis on photographs. We aim to leverage deep learning to perform material analysis on medical images. Because material datasets for medicine are scarce, we first introduce a texture dataset generation algorithm that automatically samples desired textures from annotated or unannotated medical images. Second, we use a novel Siamese neural network called D-CNN to predict patch similarity and build …


A Capacitive Sensing Gym Mat For Exercise Classification & Tracking, Adam Goertz May 2020

A Capacitive Sensing Gym Mat For Exercise Classification & Tracking, Adam Goertz

Computer Science and Computer Engineering Undergraduate Honors Theses

Effective monitoring of adherence to at-home exercise programs as prescribed by physiotherapy protocols is essential to promoting effective rehabilitation and therapeutic interventions. Currently physical therapists and other health professionals have no reliable means of tracking patients' progress in or adherence to a prescribed regimen. This project aims to develop a low-cost, privacy-conserving means of monitoring at-home exercise activity using a gym mat equipped with an array of capacitive sensors. The ability of the mat to classify different types of exercises was evaluated using several machine learning models trained on an existing dataset of physiotherapy exercises.