Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Engineering

Wetting Transition Of Texturized Surfaces, Jenna Stephens Jan 2023

Wetting Transition Of Texturized Surfaces, Jenna Stephens

Williams Honors College, Honors Research Projects

Building on previous research, this project aims to continue the investigation of the wettability of various liquids on a uniform, texturized surface. Different surface energies can impact the wettability of a surface. The surface can be hydrophilic, hydrophobic, or in between. The goal of this project is to research how features of texturized surfaces affect the wetting transition of water, oil, and a mixture of both. Additionally, this project aims to improve the quality of the 3D printed surfaces. The surfaces that will be studied are constructed using UV cured resin 3D printing and are made up of an array …


Coolant Capability Study, Christina Grassi Jan 2023

Coolant Capability Study, Christina Grassi

Williams Honors College, Honors Research Projects

The scope of my project is a capability study on different coolants used in manufacturing plants. From this study, the coolant qualities and impact on the manufacturing process will be evaluated in that process and will be documented as a changed standard at the Timken company. Since coolants are sometimes the only fluid on the surface of the parts being manufactured, the rust preventative capabilities will also be studied and evaluated through humidity cabinet testing with and without spiking the coolant with chlorides and sulfates. This project will be carried out on my co-op rotation with the Timken company so …


Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston Jan 2023

Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston

Williams Honors College, Honors Research Projects

The motivation and objectives of this project is to examine the mechanisms of intergranular corrosion (IGC) and pitting corrosion of sensitized AA5083. In this regard, different characterization techniques were used, including optical analysis of microstructure, cyclic potentiodynamic polarization with Tafel fitting, electrochemical impedance spectroscopy with electrical equivalent circuit (EEC) fitting, and potentiostatic current transient monitoring. The transition from IGC to pitting corrosion occurs when the grain boundaries become saturated with the β-phase (Mg2Al3). It was found that AA5083 becomes more vulnerable to pitting corrosion as the degree of sensitization increases.


Dome Tester, Clark Bates, Nikolas M. Kulin Jan 2023

Dome Tester, Clark Bates, Nikolas M. Kulin

Williams Honors College, Honors Research Projects

We are reconfiguring and modifying the previously built dome tester to be more user friendly and mechanically applicable. This has a long-term goal of being a usable teaching tool for manufacturing education within the college of engineering and polymer sciences. The dome tester pushes a metal dome into a clamped sheet of metal to test its forming limits and where necking occurs. We have implemented a better method of viewing the sheet sample as it is being deformed, and improved measuring methods for the distance a sample is deformed. By introducing these changes in conjunction with improved documentation of the …


Electrochemical Impedance Spectroscopy Analysis Of Corrosion Of Reinforcing Steel In Fly Ash Mortar By Means Of Transmission Line Modeling, Padraig Stack Jan 2022

Electrochemical Impedance Spectroscopy Analysis Of Corrosion Of Reinforcing Steel In Fly Ash Mortar By Means Of Transmission Line Modeling, Padraig Stack

Williams Honors College, Honors Research Projects

Electrochemical impedance spectroscopy (EIS) is an important non-destructive tool that allows for a deeper understanding of the electrochemical processes and mechanisms occurring in an electrochemical cell. Equivalent electrical circuits (EECs) are used to model the impedance data into electrical components, such as resistors and capacitors, on a circuit. Current potentiostat offers software packages that can analyze the frequency response, but the software only supports “simple” EEC that can be written as fixed electrical components in some combination of series and parallel. Park and Macdonald propose a transmission line model (TLM) that does not use lumped-element models, instead, the values of …


Analysis And Comparison Of Nir Pigments For "Cool" Coating Applications, Karey Steinmetz Jan 2022

Analysis And Comparison Of Nir Pigments For "Cool" Coating Applications, Karey Steinmetz

Williams Honors College, Honors Research Projects

The goal of this research is to compare our own formulation of near infrared radiation (NIR) pigment coating to commercialized ones. These near infrared coatings are designed to be used on roofs of buildings to keep the buildings from absorbing the heat from the sun’s radiation. This would keep the building cooler and use less energy and money to cool the building. In this study, Styrofoam was used to build a lab-scale house and were put under heat lamps that mimicked the sun. Temperatures were taken at three different locations to determine the effectiveness of the pigmented coatings. Color and …


Electrochemical Chloride Removal, Marcus Yudt Jan 2022

Electrochemical Chloride Removal, Marcus Yudt

Williams Honors College, Honors Research Projects

Electrochemical chloride removal (ECR) was tested to see its effectiveness in preventing corrosion on rebar samples within 3.5 wt% sodium chloride concrete. In order to do this, three scenarios were evaluated using electrochemical techniques such as cyclic potentiodynamic polarization and electrochemical impedance spectrsoscopy as well as visual inspections. The three scenarios that were evaluated were one with no chlorides present within the concrete, one that was a worst-case scenario where extreme pitting and corrosion were initiated, and one that had chlorides present and received the ECR treatment. Cyclic polarization curves showed that the ECR and reference without chlorides had similar …


Pulse Reverse Current Electrodeposited Tio2 Doped Ni-W Coating, Sydney Hughes Jan 2021

Pulse Reverse Current Electrodeposited Tio2 Doped Ni-W Coating, Sydney Hughes

Williams Honors College, Honors Research Projects

Nickel-Tungsten (Ni-W) coatings via the pulse reverse current method have been under development as a potential replacement for typical Chromium/Cadmium coatings. To increase the effectiveness of Ni-W as a coating, dopants have been tested to decrease microcracks and pores and increase overall tribological performance. Previous research by Timken Engineered Surfaces Laboratory showed that Ni-W doped with TiO2 nanoparticles had a positive effect on coating performance. The purpose of this study was to determine the ideal solution parameters (i.e. TiO2 concentration, pH) to maximize the benefit of the dopant when samples are subjected to tribological testing. Here, solutions of …


Increasing The Corrosion Protection Of Aisi 1008 Carbon Steel By Surface Treatment With Unmodified And Benzotriazole Modified Sol-Gel Films, Shane Thomas Kelliher Jan 2021

Increasing The Corrosion Protection Of Aisi 1008 Carbon Steel By Surface Treatment With Unmodified And Benzotriazole Modified Sol-Gel Films, Shane Thomas Kelliher

Williams Honors College, Honors Research Projects

The corrosion performance of sol-gel coated AISI 1008 carbon steel was investigated in 3.5 wt% NaCl solutions of pH 7, 9, and 12 using electrochemical measurements. A corrosion inhibitor, benzotriazole (BTA) was added to the sol-gel mixture and tested as a second, modified sol-gel coating. Sol-gel films adhered evenly to metal samples and were characterized by FTIR spectroscopy. Electrochemical Impedance Spectroscopy (EIS) showed an increase in polarization resistance from blank to sol-gel coated samples (600-18,800,000 ohms). Cyclic polarization (CPP) curves showed positive hysteresis loops for blank and unmodified sol-gel coated samples which increased at high pH following the backward potential …


Application Of Laser Assisted Ultrasonic Nanocrystal Surface Modification On Aluminum And 3d Printed Titanium, Eman Hassan, Thomas Crouse Jan 2021

Application Of Laser Assisted Ultrasonic Nanocrystal Surface Modification On Aluminum And 3d Printed Titanium, Eman Hassan, Thomas Crouse

Williams Honors College, Honors Research Projects

A novel surface treatment, laser assisted ultrasonic nanocrystal surface modification (LA-UNSM), has proved effective in increasing surface hardness, and fatigue life. The objective of this research is to determine the effectiveness of this process on components created with additive manufacturing. To accomplish this, we investigated the effectiveness of LA-UNSM treatment on aluminum, a common 3d printed metal, and the effectiveness of LA-UNSM processing on 3d printed titanium. We first conducted our own literature review to assess the practicality of using this same treatment on aluminum. We then treated traditionally manufactured aluminum at varying levels of laser intensity to determine if …


Testing The Effectiveness Of Various Fabrics For Use In Protective Face Coverings, Isaac Daley Jan 2021

Testing The Effectiveness Of Various Fabrics For Use In Protective Face Coverings, Isaac Daley

Williams Honors College, Honors Research Projects

Facemask requirements have been heavily implemented as a result of the COVID-19 pandemic. The purpose of this study was to test various fabrics that could be used in face coverings and determine which materials are best for reducing virus transmission rates. Of the seven fabrics tested, five were conventional home-use fabrics and the other two were surfaces modified with hydrophobic organosilanes. Wettability and droplet adherence tests were performed on each material. The materials that performed the best were decyltrichlorosilane (DTS) modified cotton, perfluorotrichlorosilane (FTS) modified cotton, and polyester. Contact angles for water droplets on these fabrics were 106°, 93°, and …


Atmospheric Corrosion Of Galvanically Coupled Aluminum Alloys And Carbon Steel, Mitchell Felde Jan 2021

Atmospheric Corrosion Of Galvanically Coupled Aluminum Alloys And Carbon Steel, Mitchell Felde

Williams Honors College, Honors Research Projects

Aluminum alloys are a steadily growing material being commonly used in lieu of typical steels. Additional alloying, heat treatment, and other property enhancing processes are expanding the use of these alloys. However, with this expansion, galvanic corrosion is becoming more of an issue in the design stage due to the combination of these alloys with steels. The automotive industry is one industry where the use of aluminum alloys is becoming common practice. Aluminum alloys provide a lightweight aspect over the conventional carbon steel that was used previously. As a result of this transition towards more lightweight materials, galvanic coupling is …


Tabletop Dome Tester, Dylan Davis Jan 2021

Tabletop Dome Tester, Dylan Davis

Williams Honors College, Honors Research Projects

The project for the dome tester stand is a continuation from a group of four that worked on the stand in Spring of 2020. The project itself is based around the Erichsen Cupping test to test the material properties, in our application specifically, observing the forming limits of strain in deep drawing applications of sheet metal. Testing pieces in varying lengths from 4” x 4” squares to 4” x 0.5” strips to the depth that necking begins on the piece to determine the limit before cracks appear using a hemispherical punch to draw the material sample clamped between two dies. …


Effects Of Sensitization On Intergranular Boundaries Of Aluminum Alloy 5083, Kyle Balentine Jan 2020

Effects Of Sensitization On Intergranular Boundaries Of Aluminum Alloy 5083, Kyle Balentine

Williams Honors College, Honors Research Projects

The purpose of this Honors Research Project is to show the effect of sensitization on intergranular corrosion (IGC) on AA5083. Sensitization is the process of a material to experience microstructural phase change, caused by thermal treatment, which promotes precipitation of secondary phases on the grain boundaries. The nitric acid mass loss test (NAMLT), SEM analysis, cyclic potentiodynamic polarization (CPP), and Electrochemical Impedance Spectroscopy (EIS) were performed to find a correlation to the degree of sensitization (DOS) and the pitting and IGC mechanisms. The DOS increased as heat treatment was applied. The SEM images displayed no clear precipitates on the grain …


Table Top Dome Tester, Travis Bernard, Sarah Kassinger, Amanda O'Reilly, Scott Salerno Jan 2020

Table Top Dome Tester, Travis Bernard, Sarah Kassinger, Amanda O'Reilly, Scott Salerno

Williams Honors College, Honors Research Projects

The Erichsen Cupping Test was used as a basis to design a dome tester. The intention of a dome tester is to test sheet metal material properties in all directions. This was done by clamping a piece of sheet metal and using a piston and hydraulic press to punch through the material. The force used to punch the material and the height of the deforming material can be gathered and the sheet metal properties can then be calculated. At the end of the project the team was able to successfully design and manufacture a hydraulic dome tester. However, due to …


Solvent-Free Coating Using Maco Bio-Based Reactive Diluent, Ryder James Jan 2020

Solvent-Free Coating Using Maco Bio-Based Reactive Diluent, Ryder James

Williams Honors College, Honors Research Projects

The project performed utilizes methacrylated cardanol (MACO) and a linseed oil resin to test how different weight percentages of MACO affect coating performance. MACO is synthesized from a phenolic lipid extracted from cashew nut shells, which are a cashew industry waste product. Not only does it utilize a waste product, but being a bio-based reactive diluent means it can replace the use of volatile organic solvents that are harmful to both humans and the environment. Weight percentage samples of 0%, 10%, 20%, 30%, and 40% were used. Coatings were applied using a 6-mil drawn down bar, with samples being prepared …


Chloride Effect In Fly Ash Geopolymer Cement, Evan Dimmick Jan 2020

Chloride Effect In Fly Ash Geopolymer Cement, Evan Dimmick

Williams Honors College, Honors Research Projects

The production of ordinary portland cement (OPC) poses a significant impact on the world's carbon dioxide emissions through the wide global use of concrete. Geopolymer cements (GPC) made from alkali activated fly ash can serve as a replacement to OPCs, reducing the carbon dioxide emissions by as much as 80%. GPCs exhibit adequate or superior mechanical performance to OPCs. The corrosion of carbon steel rebar in concrete occurs largely from chloride ion attack. The focus of this project will be to experimentally determine the coefficient of diffusion for chloride ions in GPCs and OPCs and compare to the corrosion performance …


Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk Jan 2020

Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk

Williams Honors College, Honors Research Projects

The need for hands-on and face-to-face experiences in the engineering classroom is very great. The equations, principles, and concepts can all be learned, but without the visual and tactile application, these don’t always sink in or become concrete. A small-scale tensile test machine was designed, sourced, manufactured, and tested for the purpose of being applied in classroom settings to provide this experience to engineering students. Extensive research was performed concerning tensile machines on the market, the essential elements of which are the load cell, grips, crosshead, extensometer, motor, and frame. The raw materials for the frame were purchased and drawings …


Jominy Hardenability Tester With In-Situ Heating, Luke Allen Jan 2020

Jominy Hardenability Tester With In-Situ Heating, Luke Allen

Williams Honors College, Honors Research Projects

This project centers on building a Jominy Hardenability tester with In-Situ heating for the manufacturing lab at the University of Akron. A new process and setup will be designed using engineering concepts in order to make the testing more efficient and safer for the teaching and testing of metal hardness. The current Jominy testing setup has efficiency issues within the transfer of specimen from induction heater to testing rig. Our design will simplify the design by creating a test rig that removes the traveling aspect of the specimen which will limit the amount of premature cooling done and will be …


Benefits Of Aluminum: Comparing The Common Materials In The Bar Grating Industry, Joanthan Geiser Jan 2019

Benefits Of Aluminum: Comparing The Common Materials In The Bar Grating Industry, Joanthan Geiser

Williams Honors College, Honors Research Projects

The main aim of this project is to study the wholistic behavior of the 6xxx series of aluminum for use in the bar grating industry for a waste water treatment environment. This project will study the comparison of certain aluminum 6xxx series alloys to steel, stainless steel, and glass fiber-reinforced plastic. While comparing these materials, it will look at the mechanical properties such as modulus of elasticity, yield strength, and ultimate tensile strength. In addition, the available corrosion test of the 6xxx series aluminum alloys will be examined to find a generalization of the corrosion behavior for this series. A …


Carbon Fiber Monocoque, Dan Brown, Leland Hoffman Jan 2019

Carbon Fiber Monocoque, Dan Brown, Leland Hoffman

Williams Honors College, Honors Research Projects

The University of Akron’s Human Powered Vehicle Team designed a high performing, fully functioning vehicle that is safe, efficient, and practical for the 2018-2019 season. These objectives were the main priorities when it came to the initial stages of designing the vehicle. In addition, the vehicle was designed in accordance with the ASME 2019 Human Powered Vehicle Challenge guidelines to satisfy all the rules and requirements. Additional priorities have been created to teach practical engineering skills and techniques to the students participating in the project through different points in the production process including research, vehicle design, construction, and testing.

The …


Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu Jan 2019

Form Stable Phase-Change Materials, Russell Dent, Marjan Kashfipour, Nitin Mehra, Jiahua Zhu

Williams Honors College, Honors Research Projects

This work investigates the use of two different polyols, xylitol (Xyl) and erythritol (Ery), in conjunction with boron nitride (BN) aerogels, for the purpose of creating thermally conductive composites. While the BN filler in Xyl composites achieved a high anisotropic thermal conductivity of up to 4.53 W/m-K at 18.2 weight percent filler loading, they do not exhibit good phase-change material qualities due to a low solidification enthalpy even at low cooling rates. Alternatively, the BN-Ery composites have shown promising results with a solidification enthalpy of 225.14 J/g and a melting enthalpy of 385.84 J/g at a heat rate of 5 …


The Influence Of Organic Pigments On Coating Properties, Sarah Medeiros Jan 2018

The Influence Of Organic Pigments On Coating Properties, Sarah Medeiros

Williams Honors College, Honors Research Projects

Abstract

The purpose of this project was to identify the qualities of two synthesized organic pigments added to a coating. These high-performance pigments were benzodipyrrolidone and benzodifuranone, which are π-conjugated monomers. These pigments were each formulated into two different pigment concentrations and compared with a control that had no pigment. This project is limited by time constraints and the number of variables that can be tested in that time. Performance testing was conducted to evaluate the qualities of these coatings. The results demonstrated that the coatings were reproducible and most tests had results that were equal to or exceeded the …


Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi Jan 2018

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi

Williams Honors College, Honors Research Projects

Modern flight vehicles, such as rockets, missiles, and airplanes, experience a force caused by forebody wave drag during the flight. This drag force is induced when the frontal point of each vehicle breaks the pressure wave during flight. Efforts to reduce this wave drag force to improve flight efficiency include modifying the nosecone profile of the flight vehicles to lower the drag force.

This project revolved around creating a design to make the transformation of nosecone shapes from a ¾ Parabolic profile to a ½ Power Series profile possible, mid-flight. Using a novel nosecone assembly, shape memory alloys (SMAs) and …


Interfacial Corrosion Of Copper And The Formation Of Copper Hydroxychloride, Mary Teague, Shengxi Li, Hongbo Cong Jan 2018

Interfacial Corrosion Of Copper And The Formation Of Copper Hydroxychloride, Mary Teague, Shengxi Li, Hongbo Cong

Williams Honors College, Honors Research Projects

Electrical circuitry is an industry, among many others, heavily using the element of copper. Ensuring the mechanical integrity of Cu is crucial, especially in salt environments, for the multifaceted composition of circuits. 4N NaCl solution (equilibrium concentration in ~84% RH) simulated this three-phase system. Rectangular Cu samples were partially immersed in both ambient and continuous lab air sparging atmospheres to understand waterline corrosion of the metal. Open circuit potentials (OCP) were continuously taken during the immersion testing for a maximum of 5 days. A scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), Raman spectroscopy, and 3-D …


Design And Testing Of Flexible Lithium-Ion Batteries, Ryan C. Kramanak, Matt A. Murrow, Matt Stolfer, Jered Tyler, Aaron Moser Jan 2017

Design And Testing Of Flexible Lithium-Ion Batteries, Ryan C. Kramanak, Matt A. Murrow, Matt Stolfer, Jered Tyler, Aaron Moser

Williams Honors College, Honors Research Projects

The goal of this disquisition is to delineate the development of a material and casing suitable for flexible lithium-ion rechargeable batteries. Development of these cells is driven by increasing interest in portable and flexible electronics. The goal is to implement them into items such as smart cards, wearable electronics, novelty packages, flexible displays, and transdermal drug delivery patches. To accomplish this task, a number of individual cathode compounds were explored that used different compositions of lithium cobalt oxide and other compounds. These cells were tested in a generic and easily manufacturable cell casing. After the catholyte compound testing was completed …


Pitting Corrosion Of 410 Stainless Steel In Hcl Solutions, Paul D. Krell Jan 2017

Pitting Corrosion Of 410 Stainless Steel In Hcl Solutions, Paul D. Krell

Williams Honors College, Honors Research Projects

410 stainless steel (SS) is a material used in HCl services, such as distillation column trays in oil refineries. Unlike other alloys, however, the oil refining industry lacks a good reference for the corrosion rate of 410 SS at the varying HCl concentrations and temperatures the material might experience as trays in crude unit distillation columns. The goal of this project is to fill that knowledge gap. The corrosion behavior of 410 SS in HCl environments of pH 0.50, 1.25, 2.25, 3.25, and 4.25 at temperatures of 38, 52, 79, and 93°C was investigated using several methods. Cyclic potentiodynamic polarization …


Galvanic Corrosion On Monel K-500 And 1018 Carbon Steel Couple, John K. Nnyanzi Jan 2016

Galvanic Corrosion On Monel K-500 And 1018 Carbon Steel Couple, John K. Nnyanzi

Williams Honors College, Honors Research Projects

The purpose of this research project was to evaluate galvanic damage on 1018 Carbon Steel coupled to Monel K-500 at varying rotation speeds on a rotating cylinder electrode in an aerated solution of ASTM artificial seawater. The work in this project is and attempt to study corrosion behavior for a Monel fastener coupled to a Carbon Steel plate. Polarization curves of each material at different rotation speeds were created to predict the corrosion behavior for a galvanic couple of Carbon Steel and Monel. The Potentiodynamic sweeps predict an increase in the corrosion current density for the galvanic couple when then …


Oxidation Resistance Of Nanocrystalline 316l Stainless Steel Processed By High Pressure Torsion, Kevin J. Meisner Jan 2016

Oxidation Resistance Of Nanocrystalline 316l Stainless Steel Processed By High Pressure Torsion, Kevin J. Meisner

Williams Honors College, Honors Research Projects

High Pressure Torsion (HPT) is a materials processing method used to refine the grain size of metallic materials through the application of simultaneous axial and torsional strain. HPT is reported to result in nanocrystalline structure, which the current scientific literature suggests may improve the high temperature oxidation resistance by enhancing diffusion of solutes, particularly Cr, to the surface to form a protective external oxide scale. If oxidation resistance is improved, this possibly allows the use of 316L in oxidizing environments where more expensive alloys are typically used. However, the influence of grain refinement to nanoscale on various properties have been …


The Examination Of Stress Corrosion Cracking In High Strength Carbon Steel Through Combined Mechanical-Electrochemical Testing, Jacob Sines Jan 2015

The Examination Of Stress Corrosion Cracking In High Strength Carbon Steel Through Combined Mechanical-Electrochemical Testing, Jacob Sines

Williams Honors College, Honors Research Projects

Through the analysis of materials and environments seen in industry a better understanding of the fundamentals behind degradation mechanisms can be observed. The scope of this project was to better understand the fundamentals behind the degradation of high strength pipeline steels in a lab setting to simulate an environment seen in industry. Specifically the degradation mechanisms of high and nearly neutral pH stress corrosion cracking were examined in environments that simulated oil and gas pipelines buried in soil. Experimentation was carried out utilizing X65 carbon steel specimen, a Gamry potentiostat, a CORTEST proof ring, a CORTEST slow strain rate machine, …