Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Inductive Monitoring Systems: A Cubesat Ground-Based Prototype, Michelle Haddock Dec 2015

Inductive Monitoring Systems: A Cubesat Ground-Based Prototype, Michelle Haddock

Master's Theses

Inductive Monitoring Systems (IMS) are the newest form of health monitoring available to the aerospace industry. IMS is a program that builds a knowledge base of nominal state vectors from a nominal data set using data mining techniques. The nominal knowledge base is then used to monitor new data vectors for off-nominal conditions within the system. IMS is designed to replace the current health monitoring process, referred to as model-based reasoning, by automating the process of classifying healthy states and anomaly detection. An IMS prototype was designed and implemented in MATLAB. A verification analysis then determined if the IMS program …


Divergent Plume Reduction Of A High-Efficiency Multistage Plasma Thruster, Christopher M. Barlog Dec 2015

Divergent Plume Reduction Of A High-Efficiency Multistage Plasma Thruster, Christopher M. Barlog

Master's Theses

High Efficiency Multistage Plasma Thrusters (HEMPTs) are a relatively new form of electric propulsion that show promise for use on a variety of missions and have several advantages over their older EP competitors. One such advantage is their long predicted lifetime and minimal wall erosion due to a unique periodic permanent magnet system. A laboratory HEMPT was built and donated by JPL for testing at Cal Poly. Previous work was done to characterize the performance of this thruster and it was found to exhibit a large plume divergence, resulting in decreased thrust and specific impulse. This thesis explores the design …


Spacecraft Trajectory Optimization Suite (Stops): Optimization Of Multiple Gravity Assist Spacecraft Trajectories Using Modern Optimization Techniques, Timothy J. Fitzgerald Dec 2015

Spacecraft Trajectory Optimization Suite (Stops): Optimization Of Multiple Gravity Assist Spacecraft Trajectories Using Modern Optimization Techniques, Timothy J. Fitzgerald

Master's Theses

In trajectory optimization, a common objective is to minimize propellant mass via multiple gravity assist maneuvers (MGAs). Some computer programs have been developed to analyze MGA trajectories. One of these programs, Parallel Global Multiobjective Optimization (PaGMO), uses an interesting technique known as the Island Model Paradigm. This work provides the community with a MATLAB optimizer, STOpS, that utilizes this same Island Model Paradigm with five different optimization algorithms. STOpS allows optimization of a weighted combination of many parameters. This work contains a study on optimization algorithm performance and how each algorithm is affected by its available settings.

STOpS successfully found …


Open Source Toolkit For Reentry Object Modeling, Christopher Lloyd Ostrom Ii Dec 2015

Open Source Toolkit For Reentry Object Modeling, Christopher Lloyd Ostrom Ii

Master's Theses

Predicting the mass, position, and velocity of an object during its reentry are critical to satisfy NASA and ESA requirements. This thesis outlines a 3-D orbit and mass determination system for use on low earth orbit as applicable to general objects, of various material and size. The solution uses analytical models to calculate heat flux and aerodynamic drag, with some basic numerical models for simple orbit propagation and mass flow rate due to ablation. The system outlined in this thesis currently provides a framework for rough estimates of demise altitude and final mass, but also allows for many potential accuracy …


Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina Oct 2015

Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina

Master's Theses

Performance characterization was undertaken for an air augmented rocket mixing duct with annular cavity configurations intended to produce thrust augmentation. Three mixing duct geometries and a fully annular cavity at the exit of the nozzle were tested to enable thrust comparisons. The rocket engine used liquid ethanol and gaseous oxygen, and was instrumented with sensors to output total thrust, mixing duct thrust, combustion chamber pressure, and propellant differential pressures across Venturi flow measurement tubes.

The rocket engine was tested to thrust maximum, with three different mixing ducts, three major combustion pressure sets, and a nozzle exit plane annular cavity (a …


Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green Sep 2015

Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green

Master's Theses

Small electric uninhabited aerial vehicles (UAV) represent a rapidly expanding market requiring optimization in both efficiency and weight; efficiency is critical during cruise or loiter where the vehicle operates at part power for up to 99% of the mission time. Of the four components (battery, motor, propeller, and electronic speed controller (ESC)) of the electric propulsion system used in small UAVs, the ESC has no accepted performance model and almost no published performance data. To collect performance data, instrumentation was developed to measure electrical power in and out of the ESC using the two wattmeter method and current sense resistors; …


Development Of Cpanel, An Unstructured Panel Code, Using A Modified Tls Velocity Formulation, Christopher R. Satterwhite Sep 2015

Development Of Cpanel, An Unstructured Panel Code, Using A Modified Tls Velocity Formulation, Christopher R. Satterwhite

Master's Theses

The use of panel codes in the aerospace industry dates back many decades. Recent advances in computer capability have allowed them to evolve, both in speed and complexity, to provide very quick solutions to complex flow fields. By only requiring surface discretization, panel codes offer a faster alternative to volume based methods, delivering a solution in minutes, as opposed to hours or days. Despite their utility, the availability of these codes is very limited due to either cost, or rights restrictions.

This work incorporates modern software development practices, such as unit level testing and version control, into the development of …


Development Of Tools Needed For Radiation Analysis Of A Cubesat Deployer Using Oltaris, Marycarmen Gonzalez-Dorbecker Aug 2015

Development Of Tools Needed For Radiation Analysis Of A Cubesat Deployer Using Oltaris, Marycarmen Gonzalez-Dorbecker

Master's Theses

Currently, the CubeSat spacecraft is predominantly used for missions at Low- Earth Orbit (LEO). There are various limitations to expanding past that range, one of the major ones being the lack of sufficient radiation shielding on the Poly-Picosatellite Orbital Deployer (P-POD). The P-POD attaches to a launch vehicle transporting a primary spacecraft and takes the CubeSats out into their orbit. As the demand for interplanetary exploration grows, there is an equal increase in interest in sending CubeSats further out past their current regime. In a collaboration with NASA’s Jet Propulsion Laboratory (JPL), students from the Cal Poly CubeSat program worked …


Development Of An Interactive Wave Drag Capability For The Openvsp Parametric Geometry Tool, Michael Jon Waddington Jul 2015

Development Of An Interactive Wave Drag Capability For The Openvsp Parametric Geometry Tool, Michael Jon Waddington

Master's Theses

Minimizing wave drag is critical to successful and efficient transonic and supersonic flight. Area-ruling is the process of managing the cross-sectional area of an aircraft to lessen the wave drag experienced in flight. Effectively calculating the necessary areas for a given aircraft can be difficult, and existing tools for conducting a wave drag analysis often carry limitations in both functionality and availability.

In this work, the author utilized an existing parametric geometry tool named OpenVSP to create an interactive design tool for approximating zero-lift wave drag. Here, the wave drag calculation methodology used in industry for decades is combined with …


Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair Jun 2015

Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair

Materials Engineering

Raytheon Company currently uses a Forest Products Laboratory (FPL) paste etchant for preparing aluminum surfaces for adhesive bonding, and FPL is a source of hazardous hexavalent chromium. The goal of this study was to evaluate a less-toxic P2 paste etchant as a possible replacement. Coupons of 2024-T3, 6061-T6, and 7075-T6 grades of aluminum alloy were solvent-degreased, abrasively cleaned, and etched at room temperature using P2 paste following a strict protocol adopted from Raytheon. Coupons were then left exposed to air for assigned time intervals (or “outlife” times) of 0, 1, 4, 8, 16, and 63 or 72 hours. The aluminum …


Characterization Of Laser Deposited Ti-6al-4v To Nb Gradient Alloys, Clincy Cheung Jun 2015

Characterization Of Laser Deposited Ti-6al-4v To Nb Gradient Alloys, Clincy Cheung

Materials Engineering

An alloy was fabricated with Ti-6Al-4V and Nb powder using laser deposition (LD) to form a compositional gradient. The gradient was deposited, starting with Ti-6Al-4V powder, onto a forged Ti-6Al-4V substrate in an Argon environment. Niobium (Nb) composition increased by 4-at.% with each layer deposited until the composition reached 100-at.% Nb. This process yielded steep thermal gradients and affected the microstructure and mechanical properties across the compositional gradient. To observe the microstructural changes in the alloy, an etched gradient was viewed with optical microscopy at 1000x, where the grain structure was observed to be an acicular α phase at 100-at.% …


Electric Commuter Multicopter, Marley Hunter Miller, Blake Sperry, Ike Sheppard, Olliver Fredrick Kunz, Sam Juday, Alex O'Hearn, Kyle Seth Kruse, Arthur Norwood, Jarrell Washington Jun 2015

Electric Commuter Multicopter, Marley Hunter Miller, Blake Sperry, Ike Sheppard, Olliver Fredrick Kunz, Sam Juday, Alex O'Hearn, Kyle Seth Kruse, Arthur Norwood, Jarrell Washington

Mechanical Engineering

This document describes the design, analysis, and overall goals of the Electric Commuter Multicopter (ECM) Senior Project. It was presented by Bob Addis and Bill Burner to the senior mechanical engineering class of 2015 at Cal Poly, San Luis Obispo. The progress and development of the project are described in detail and to an extent that an individual or group with similar aspirations can construct their own multicopter or expand upon this one. The goal of this project is to create an Ultralight, as defined by FAA Part 103, commuter multicopter vehicle capable of transporting an individual to and from …


Tesseract, Edgar Uribe, Vanessa Faune Jun 2015

Tesseract, Edgar Uribe, Vanessa Faune

Mechanical Engineering

PolySat is a student-run, Cal Poly research program in which students develop small satellites, known as CubeSats, to be sent into space. Since the start of the program in 2000, PolySat has developed eight 10cm x 10cm x10cm CubeSats. Recently, the team has developed two satellites of double, and triple, that size for NASA-KSC & AI-Solutions and the National Science Foundation. The recent volumetric expansion has been driven by high demand for further satellite functionality, which necessitates large power generation capabilities. To remain competitive in the growing CubeSat industry, PolySat must develop a platform that can provide enough power to …


Sense And Avoid Uas Project Final Design Report, Katie Peticolas, Cesia Cazares, Trevor Elsbree, Courtney Smith, Herberth Elie Navas Jun 2015

Sense And Avoid Uas Project Final Design Report, Katie Peticolas, Cesia Cazares, Trevor Elsbree, Courtney Smith, Herberth Elie Navas

Biomedical Engineering

No abstract provided.


The Creation, Analysis, And Verification Of A Comprehensive Model Of A Micro Ion Thruster, Maxwell J. Bodnar Jun 2015

The Creation, Analysis, And Verification Of A Comprehensive Model Of A Micro Ion Thruster, Maxwell J. Bodnar

Master's Theses

A computational model of the micro-ion thruster MiXI has been developed, analyzed, and partially verified. This model includes submodels that govern the physical, magnetic, electrostatic, plasma physics, and power deposition of the thruster. Over the past few years, theses have been conducted with the goal of running tests and analyzing the results; this model is used to understand how the thruster components interact so as to make predictions about, and allow for optimization of, the thruster operation. Testing is then performed on the thruster and the results are compared to the output of the code. The magnetic structure of the …


Inlet Shape Considerations For Split-Wing Electric Distributed Propulsion, Kurt Vonderhaar Papathakis Jun 2015

Inlet Shape Considerations For Split-Wing Electric Distributed Propulsion, Kurt Vonderhaar Papathakis

Master's Theses

This thesis aims to uncover preliminary design relationships for an inlet of a split-wing electric distributed propulsion regional airliner. Several aspects of the inlet design were investigated, including: the overall thickness of the airfoil section with respect to the chord, inlet throat area, and lip radius. These parameters were investigated using several angles of attack and mass flow rates through the fan. Computational fluid dynamics, with a 2nd Order turbulence model was used and validated against World War II era data from NACA, as those studies were the most pertinent wind tunnel data available. Additionally, other works by Boeing, …


Hybrid Rocket Motor Scaling Process, Joseph B. R. Vanherweg Jun 2015

Hybrid Rocket Motor Scaling Process, Joseph B. R. Vanherweg

Master's Theses

Hybrid rocket propulsion technology shows promise for the next generation of sounding rockets and small launch vehicles. This paper seeks to provide details on the process of developing hybrid propulsion systems to the academic and amateur rocket communities to assist in future research and development. Scaling hybrid rocket motors for use in sounding rockets has been a challenge due to the inadequacies in traditional boundary layer analysis. Similarity scaling is an amendment to traditional boundary layer analysis which is helpful in removing some of the past scaling challenges. Maintaining geometric similarity, oxidizer and fuel similarity and mass flow rate to …


Structural Micrometeoroid And Radiation Shielding For Interplanetary Spacecraft, Jared Allen Ruekberg Jun 2015

Structural Micrometeoroid And Radiation Shielding For Interplanetary Spacecraft, Jared Allen Ruekberg

Master's Theses

This paper focused on two significant space forces that can affect the success of a spacecraft: the radiation and micrometeoroid environments. Both are looked at in the context of the region of space between Earth and Mars. The goal was create reference environments, to provide context to results of environmental modeling, and to provide recommendations to assist in early design decisions of interplanetary spacecraft. The radiation section of this report used NASA's OLTARIS program to generate data for analysis. The area of focus was on the radiation effects for crewed missions, therefore effective dose equivalent was the metric used to …


A Customer Value Assessment Process (Cvap) For Ballistic Missile Defense, Alex Hernandez Jun 2015

A Customer Value Assessment Process (Cvap) For Ballistic Missile Defense, Alex Hernandez

Master's Theses

A systematic customer value assessment process (CVAP) was developed to give system engineering teams the capability to qualitatively and quantitatively assess customer values. It also provides processes and techniques used to create and identify alternatives, evaluate alternatives in terms of effectiveness, cost, and risk. The ultimate goal is to provide customers (or decision makers) with objective and traceable procurement recommendations. The creation of CVAP was driven by an industry need to provide ballistic missile defense (BMD) customers with a value proposition of contractors’ BMD systems. The information that outputs from CVAP can be used to guide BMD contractors in formulating …


Validation Of A Cfd Approach For Gas Turbine Internal Cooling Passage Heat Transfer Prediction, Daniel G. Wilde Jun 2015

Validation Of A Cfd Approach For Gas Turbine Internal Cooling Passage Heat Transfer Prediction, Daniel G. Wilde

Master's Theses

This report describes the development and application of a validated Computational Fluid Dynamics (CFD) modelling approach for internal cooling passages in rotating turbomachinery. A CFD Modelling approach and accompanying assumptions are tuned and validated against academically available experimental results for various serpentine passages. Criteria of the CFD modelling approach selected for investigation into advanced internal cooling flows include accuracy, robustness, industry familiarity, and computational cost.

Experimental data from NASA HOST (HOt Section Technology), Texas A&M, and University of Manchester tests are compared to RANS CFD results generated using Fluent v14.5 in order to benchmark a CFD modelling approach.

Capability of …


Experimental Investigation Of Drag Reduction By Trailing Edge Tabs On A Square Based Bluff Body In Ground Effect, Scott R. Sawyer May 2015

Experimental Investigation Of Drag Reduction By Trailing Edge Tabs On A Square Based Bluff Body In Ground Effect, Scott R. Sawyer

Master's Theses

This thesis presents an experimental investigation of drag reduction devices on a bluff body in ground effect. It has previously been shown that the addition of end-plate tabs to a rectangular based bluff body with an aspect ratio of 4 is effective in eliminating vortex shedding and reducing drag for low Reynolds number flows. In the present study a square based bluff body, both with and without tabs, will be tested under the same conditions, except this time operating within proximity to a ground plane in order to mimic the properties of bounded aerodynamics that would be present for a …


Synthetic Aperture Radar: Rapid Detection Of Target Motion In Matlab, Daniel S. Kassen May 2015

Synthetic Aperture Radar: Rapid Detection Of Target Motion In Matlab, Daniel S. Kassen

Master's Theses

Synthetic Aperture Radar (SAR) has come into widespread use in several civilian and military applications. The focus of this paper is the military application of imaging point targets captured by an airborne SAR platform. Using the traditional SAR method of determining target motion by analyzing the difference between subsequent images takes a relatively large amount of processing resources. Using methods in this thesis, target motion can be estimated before even a single image is obtained, reducing the amount of time and power used by a significantly large amount. This thesis builds on work done by Brain Zaharri and David So. …


Effect Of Sustainable And Composite Materials On The Mechanical Behavior Of Sandwich Panels Under Edgewise Compressive Loading, Justin A. Tafoya Mar 2015

Effect Of Sustainable And Composite Materials On The Mechanical Behavior Of Sandwich Panels Under Edgewise Compressive Loading, Justin A. Tafoya

Master's Theses

Over the last three decades, the aerospace industry has gradually shifted from metals to composites in many different applications due to the lightweight properties of composite materials. Some benefits of composites include higher strength-to-weight ratio and corrosion resistance. At this point in time, the composite industry researchers are focusing on renewable and sustainable materials (bio-composites). By understanding the structural capabilities of bio-composites that have been used for centuries, new developments of sustainable materials will spark more interest throughout the industry. Bio-composites include fibers such as hemp, bamboo, flax, etc. The high demand for bio-composites in composite structures can also reduce …


Design Methods For Remotely Powered Unmanned Aerial Vehicles, William Beaman Howe Mar 2015

Design Methods For Remotely Powered Unmanned Aerial Vehicles, William Beaman Howe

Master's Theses

A method for sizing remotely powered unmanned aerial vehicles is presented to augment the conventional design process. This method allows for unconventionally powered aircraft to become options in trade studies during the initial design phase. A design matrix is created that shows where, and if, a remotely powered vehicle fits within the design space. For given range and power requirements, the design matrix uses historical data to determine whether an internal combustion or electrical system would be most appropriate. Trends in the historical data show that the break in the design space between the two systems is around 30 miles …


Compact Deployable Antenna For Cubesat Units, Sarah Bolton, Dominic Doty, Peter Rivera Jan 2015

Compact Deployable Antenna For Cubesat Units, Sarah Bolton, Dominic Doty, Peter Rivera

Mechanical Engineering

CubeSats are an appealing platform for space exploration due to their low build and launch costs. Due to their small size, communication rates are often severely limited, preventing missions beyond low earth orbit. A low cost, high gain, high frequency antenna is needed to extend the capabilities of CubeSats.

The goal of the project was to design and build an axisymmetric parabolic antenna that could be deployed from a 10cm x 10cm x 15cm (1.5U) volume and operate at Ka band frequencies. The design selected consisted of an expanding perimeter truss supporting a tensioned mesh reflector. The perimeter truss was …