Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Engineering

Optimal Control Of An Uninhabited Loyal Wingman, Clay J. Humphreys Sep 2016

Optimal Control Of An Uninhabited Loyal Wingman, Clay J. Humphreys

Theses and Dissertations

As researchers strive to achieve autonomy in systems, many believe the goal is not that machines should attain full autonomy, but rather to obtain the right level of autonomy for an appropriate man-machine interaction. A common phrase for this interaction is manned-unmanned teaming (MUM-T), a subset of which, for unmanned aerial vehicles, is the concept of the loyal wingman. This work demonstrates the use of optimal control and stochastic estimation techniques as an autonomous near real-time dynamic route planner for the DoD concept of the loyal wingman. First, the optimal control problem is formulated for a static threat environment and …


Physical Layer Defenses Against Primary User Emulation Attacks, Joan A. Betances Sep 2016

Physical Layer Defenses Against Primary User Emulation Attacks, Joan A. Betances

Theses and Dissertations

Cognitive Radio (CR) is a promising technology that works by detecting unused parts of the spectrum and automatically reconfiguring the communication system's parameters in order to operate in the available communication channels while minimizing interference. CR enables efficient use of the Radio Frequency (RF) spectrum by generating waveforms that can coexist with existing users in licensed spectrum bands. Spectrum sensing is one of the most important components of CR systems because it provides awareness of its operating environment, as well as detecting the presence of primary (licensed) users of the spectrum.


Absolute Positioning Using The Earth's Magnetic Anomaly Field, Aaron J. Canciani Sep 2016

Absolute Positioning Using The Earth's Magnetic Anomaly Field, Aaron J. Canciani

Theses and Dissertations

Achieving worldwide alternatives to GPS is a challenging engineering problem. Current GPS alternatives often suffer from limitations such as where and when the systems can operate. Navigation using the Earth's magnetic anomaly field, which is globally available at all times, shows promise to overcome many of these limitations. We present a navigation filter which uses the Earth's magnetic anomaly field as a navigation signal to aid an inertial navigation system (INS) in an aircraft. The filter utilizes highly-accurate optically pumped cesium (OPC) magnetometers to make scalar measurements of the Earth's magnetic field and compare them to a map using a …


Improving Real-World Performance Of Vision Aided Navigation In A Flight Environment, Donald T. Venable Sep 2016

Improving Real-World Performance Of Vision Aided Navigation In A Flight Environment, Donald T. Venable

Theses and Dissertations

The motivation of this research is to fuse information from an airborne imaging sensor with information extracted from satellite imagery in order to provide accurate position when GPS is unavailable for an extended duration. A corpus of existing geo-referenced satellite imagery is used to create a key point database. A novel algorithm for recovering coarse pose using by comparing key points extracted from the airborne imagery to the reference database is developed. This coarse position is used to bootstrap a local-area geo-registration algorithm, which provides GPS-level position estimates. This research derives optimizations for existing local-area methods for operation in flight …


Toward Automated Aerial Refueling: Relative Navigation With Structure From Motion, Kevin W. Colson Mar 2016

Toward Automated Aerial Refueling: Relative Navigation With Structure From Motion, Kevin W. Colson

Theses and Dissertations

The USAF's use of UAS has expanded from reconnaissance to hunter/killer missions. As the UAS mission further expands into aerial combat, better performance and larger payloads will have a negative correlation with range and loiter times. Additionally, the Air Force Future Operating Concept calls for \formations of uninhabited refueling aircraft...[that] enable refueling operations partway inside threat areas." However, a lack of accurate relative positioning information prevents the ability to safely maintain close formation flight and contact between a tanker and a UAS. The inclusion of cutting edge vision systems on present refueling platforms may provide the information necessary to support …


Utilization Of A Geodesic Sphere And Quadcopter As Two-Way Field Probe For Electro-Magnetic Field Measurements In An Indoor Radar Cross Section Range, Nathan Lett Mar 2016

Utilization Of A Geodesic Sphere And Quadcopter As Two-Way Field Probe For Electro-Magnetic Field Measurements In An Indoor Radar Cross Section Range, Nathan Lett

Theses and Dissertations

Radar Cross Section (RCS) measurements rely heavily on multiple assumptions. Uncertainty in the final measurement is determined based on these assumptions. One source in particular is the non-homogeneous nature of the transmission path between radar test equipment and a target under test. The following research extends prior research. This thesis intends to provide a unique two-way field probe solution for measuring Electro-magnetic (EM) fluctuations in a test volume. In this thesis, the design, development, and demonstration of a geodesic sphere encased quadcopter two-way probe is explained. The Parrot® Bebop Drone quadcopter was used with a 2v frequency divided geodesic sphere …


Interference Suppression Using Knowledge-Aided Subarray Pattern Synthesis, David A. New Mar 2016

Interference Suppression Using Knowledge-Aided Subarray Pattern Synthesis, David A. New

Theses and Dissertations

Most phased array systems subarray many antenna elements into far fewer digitized channels. While having more degrees of freedom (DOF) yields better performance, adding channels to create more digital DOF increases system cost and data throughput requirements. A subarray itself constitutes a phased array with as many DOF as it has antenna element weights. Typically, only one degree of freedom is used to steer the maximum gain direction of the subarray pattern. For typical antenna geometries a single subarray will provide many more spatial DOF than there are digitized channels. The inherent DOF of the subarrays could be used to …


Visual-Ins Using A Human Operator And Converted Measurements, Turner J. Montgomery Mar 2016

Visual-Ins Using A Human Operator And Converted Measurements, Turner J. Montgomery

Theses and Dissertations

A method human operated INS aiding is explored in which the pilot identifies and tracks a ground feature of unknown position over a short measurement epoch using an E/O sensor. One then refers to Visual-INS. In contrast to current research trends, a human operator is entrusted with visually tracking the ground feature. In addition, a less conventional measurement linearization technique is applied to generate “converted” measurements. A linear regression algorithm is then applied to the converted measurements providing an estimate of the INS horizontal velocity error and accelerometer biases. At the completion of the measurement epoch, the INS is corrected …


Unmanned Aerial Vehicle (Uav) Operators’ Workload Reduction: The Effect Of 3d Audio On Operators’ Workload And Performance During Multi-Aircraft Control, Sungbin Kim Mar 2016

Unmanned Aerial Vehicle (Uav) Operators’ Workload Reduction: The Effect Of 3d Audio On Operators’ Workload And Performance During Multi-Aircraft Control, Sungbin Kim

Theses and Dissertations

The importance and number of Unmanned Aerial Vehicle (UAV) operations are rapidly growing in both military and civilian applications. This growth has produced significant manpower issues, producing a desire that multiple aircraft are controlled by a single operator as opposed to the current model where one aircraft may require multiple operators. A potential issue is the need for an operator to monitor radio traffic for the call signs of multi-aircraft. An investigation of the use of 3D sound was undertaken to investigate whether an automatic parser, which preselected the spatial location of relevant versus irrelevant call signs, could aid UAV …


Multihop Rendezvous Algorithm For Frequency Hopping Cognitive Radio Networks, John A. Pavlik Mar 2016

Multihop Rendezvous Algorithm For Frequency Hopping Cognitive Radio Networks, John A. Pavlik

Theses and Dissertations

Cognitive radios allow the possibility of increasing utilization of the wireless spectrum, but because of their dynamic access nature require new techniques for establishing and joining networks, these are known as rendezvous. Existing rendezvous algorithms assume that rendezvous can be completed in a single round or hop of time. However, cognitive radio networks utilizing frequency hopping that is too fast for synchronization packets to be exchanged in a single hop require a rendezvous algorithm that supports multiple hop rendezvous. We propose the Multiple Hop (MH) rendezvous algorithm based on a pre-shared sequence of random numbers, bounded timing differences, and similar …


Evaluation Of Unmanned Aircraft Flying Qualities Using Jsbsim, Joshua P. Kim Mar 2016

Evaluation Of Unmanned Aircraft Flying Qualities Using Jsbsim, Joshua P. Kim

Theses and Dissertations

Flying qualities data can be used to predict the future performance of aircraft; however, no flying qualities requirements exist for Unmanned Aerial Vehicles (UAVs). The intent of flying qualities requirements is to guarantee the safety and operational effectiveness of the aircraft. Flying qualities requirements have been extensively researched and specified for fixed-wing and rotary-wing manned aircraft based on a substantial database of assessments. The critical issue today in flying qualities is how to extend them to pilotless aircraft. A simulation study using an open-source flight dynamics model (JSBSim) was conducted to perform various performance maneuvers and evaluate how well the …


The Efficacy Of Implementing A Small, Low-Cost, Real Time Kinematic Gps System Into A Small Unmanned Aerial System Architecture, Kevin J. Hendricks Mar 2016

The Efficacy Of Implementing A Small, Low-Cost, Real Time Kinematic Gps System Into A Small Unmanned Aerial System Architecture, Kevin J. Hendricks

Theses and Dissertations

Along with the growing uses for small unmanned aerial systems (UAS) within the Department of Defense (DoD), is the utility of small UAS within the civilian market is also increasing. This has led to significant research and development on small UAS subsystems by the commercial market. The focus of this research is characterizing and investigating the application considerations of a small, low-cost real time kinematic (RTK) GPS receiver system. Work was also accomplished to characterize the accuracy and precision of the commonly used GPS receiver subsystem in small UAS to show the increased utility of the RTK GPS system. The …


Improving System Design Through The Integration Of Human Systems And Systems Engineering Models, Michael E. Watson Mar 2016

Improving System Design Through The Integration Of Human Systems And Systems Engineering Models, Michael E. Watson

Theses and Dissertations

The human is a critical aspect of many systems, but frequently there is a failure to properly account for human capabilities and involvement during system design. This inattention results in systems with higher lifecycle costs, decreased user compatibility, and the potential to produce disastrous consequences. This research presents an approach to integrating the human into system models by using two methods: static and dynamic modeling. The static method uses a user-centered design framework to create system- and human-centered models that deconstruct the system and user into their respective components. These models are integrated to create system models that include relevant …


Geolocation Of Rf Emitters Using A Low-Cost Uav-Based Approach, Michael A. Magers Mar 2016

Geolocation Of Rf Emitters Using A Low-Cost Uav-Based Approach, Michael A. Magers

Theses and Dissertations

The proliferation of unmanned aerial vehicles (UAVs) in both military and civilian settings has prompted great interest in finding new and innovative ways to utilize these tools. One such application is to locate ground-based radio emitters from a UAV platform. The goal of this research is to study the feasibility of a low-cost (on the order of $1000) UAV geolocation platform. To accomplish this goal, a series of both real-world flight testing and computer simulated scenarios were conducted. Simulations for different sensor uncertainties and approach path scenarios such as loiter and button hook patterns were investigated. Results showed that a …


Integrity Determination For Image Rendering Vision Navigation, Sean M. Calhoun Mar 2016

Integrity Determination For Image Rendering Vision Navigation, Sean M. Calhoun

Theses and Dissertations

This research addresses the lack of quantitative integrity approaches for vision navigation, relying on the use of image or image rendering techniques. The ability to provide quantifiable integrity is a critical aspect for utilization of vision systems as a viable means of precision navigation. This research describes the development of two unique approaches for determining uncertainty and integrity for a vision based, precision, relative navigation system, and is based on the concept of using a single camera vision system, such as an electro-optical (EO) or infrared imaging (IR) sensor, to monitor for unacceptably large and potentially unsafe relative navigation errors. …


Towards Automated Aerial Refueling: Real Time Position Estimation With Stereo Vision, Bradley D. Denby Mar 2016

Towards Automated Aerial Refueling: Real Time Position Estimation With Stereo Vision, Bradley D. Denby

Theses and Dissertations

Aerial refueling is essential to the United States Air Force (USAF) core mission of rapid global mobility. However, in-flight refueling is not available to remotely piloted aircraft (RPA) or unmanned aerial systems (UAS). As reliance on drones for intelligence, surveillance, and reconnaissance (ISR) and other USAF core missions grows, the ability to automate aerial refueling for such systems becomes increasingly critical. New refueling platforms include sensors that could be used to estimate the relative position of an approaching aircraft. Relative position estimation is a key component to solving the automated aerial refueling (AAR) problem. Analysis of data from a one-seventh …


Satellite Ephemeris Correction Via Remote Site Observation For Star Tracker Navigation Performance Improvement, Jorge E. Diaz Mar 2016

Satellite Ephemeris Correction Via Remote Site Observation For Star Tracker Navigation Performance Improvement, Jorge E. Diaz

Theses and Dissertations

In order for celestial navigation observing satellites to provide accurate positioning estimates, precise ephemerides of the observed satellites are necessary. This work analyzed a method to correct for satellite ephemeris to be used in celestial navigation applications. This correction is the measured angle differences between the expected location of the satellite, which is given by propagating publicly available Two-Line Elements (TLE), and their observed angles from a precisely known reference site. Therefore, the angle difference can be attributed completely to satellite ephemeris error assuming instrument error was accounted for. The intent is to calculate this correction from the reference site …


Characterization Of Quad-Copter Positioning Systems And The Effect Of Pose Uncertainties On Field Probe Measurements, James C. Dossett Mar 2016

Characterization Of Quad-Copter Positioning Systems And The Effect Of Pose Uncertainties On Field Probe Measurements, James C. Dossett

Theses and Dissertations

When measuring the Radar Cross Section (RCS) of a test object, many uncertainties must be accounted for, such as the non-homogeneous nature of the medium between the radar test equipment and the platform under test. There are a variety of other error sources, including clutter and Radio Frequency Interference (RFI), motivating the development of techniques to measure and model the uncertainties in RCS measurements. The following research, in unison with prior and current efforts, intends to reduce the impact of these uncertainties by utilizing a unique two-way field probe in the form of a geodesic sphere encompassing a commercial quad-copter …


Real-Time Implementation Of Vision-Aided Monocular Navigation For Small Fixed-Wing Unmanned Aerial Systems, Timothy I. Machin Mar 2016

Real-Time Implementation Of Vision-Aided Monocular Navigation For Small Fixed-Wing Unmanned Aerial Systems, Timothy I. Machin

Theses and Dissertations

The goal of this project was to develop and implement algorithms to demonstrate real-time positioning of a UAV using a monocular camera combined with previously collected orthorectified imagery. Unlike previous tests, this project did not utilize a full inertial navigation system (INS) for attitude, but instead had to rely on the attitude obtained by inexpensive commercial off-the-shelf (COTS) autopilots. The system consisted of primarily COTS components and open-source software, and was own over Camp Atterbury, IN for a sequence of flight tests in Fall 2015. The system obtained valid solutions over much of the flight path, identifying features in the …


Comparison Of Methods For Radio Position Of Non-Emitting Dismounts, Collin J. Seanor Mar 2016

Comparison Of Methods For Radio Position Of Non-Emitting Dismounts, Collin J. Seanor

Theses and Dissertations

Radio Tomographic Imaging (RTI) is a form of Device Free Passive Localization (DFPL) that utilizes the Received Signal Strength (RSS) values from a collection of wireless transceivers to produce an image in order to localize a subject within a Wireless Sensor Network (WSN). Radio Mapping is another form of DFPL that can utilize the same RSS values from a WSN to localize a subject by comparing recent values to a set of calibration data. RTI and Radio Mapping have never been directly compared to one another as a means of localization within a WSN. The goal of this research is …


An Openeaagles Framework Extension For Hardware-In-The-Loop Swarm Simulation, Derek B. Worth Mar 2016

An Openeaagles Framework Extension For Hardware-In-The-Loop Swarm Simulation, Derek B. Worth

Theses and Dissertations

Unmanned Aerial Vehicle (UAV) swarm applications, algorithms, and control strategies have experienced steady growth and development over the past 15 years. Yet, to this day, most swarm development efforts have gone untested and thus unimplemented. Cost of aircraft systems, government imposed airspace restrictions, and the lack of adequate modeling and simulation tools are some of the major inhibitors to successful swarm implementation. This thesis examines how the OpenEaagles simulation framework can be extended to bridge this gap. This research aims to utilize Hardware-in-the-Loop (HIL) simulation to provide developers a functional capability to develop and test the behaviors of scalable and …


Using Multiple Objective Decision Analysis To Position Federal Product And Service Codes Within The Kraljic Portfolio Matrix, Robert T. Montgomery Mar 2016

Using Multiple Objective Decision Analysis To Position Federal Product And Service Codes Within The Kraljic Portfolio Matrix, Robert T. Montgomery

Theses and Dissertations

Despite the best efforts of the Federal Government to implement strategic sourcing, recent Government Accountability Office (GAO) reports highlight major procurement deficiencies and encourage the use of commercial best practices to identify and reap substantial savings. The Kraljic Portfolio Matrix (KPM) is considered the premier tool for purchasing organizations to determine which commercial best practices to utilize for different categories of spend. However, critics of the KPM point to its lack of analytical rigor and the absence of a simplistic quantitative methodology for implementation. The Air Force Installation Contracting Agency (AFICA), the centralized procurement arm for 79 USAF installations worldwide, …


Increased Capacity Utilizing Aggregation And Consolidation Of Contingency Cargo, Cassidy L. Wilson Mar 2016

Increased Capacity Utilizing Aggregation And Consolidation Of Contingency Cargo, Cassidy L. Wilson

Theses and Dissertations

Maximizing use of limited airlift assets is a common problem during large contingency operations. Requirements often exceed airlift capacity and fiscal constraints driving the need to aggregate conveyance loads both within and across business lines (Unit Line Number (ULN), Special Assignment Airlift Mission (SAAM), and sustainment). Current methods of consolidation are completed by planners at the 618th Air Operations Center. This process is completed by piecing email correspondence and making individual localized decisions which are not always consistent with big picture efficiency. United States Transportation Command requested a study to create standard business rules or a methodology that can benefit …