Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Engineering

Development Of Cislunar Space Logistics Networks For Satellite Constellation Support Using Event-Driven Generalized Multi-Commodity Network Flows, Alexander R. Collins Nov 2019

Development Of Cislunar Space Logistics Networks For Satellite Constellation Support Using Event-Driven Generalized Multi-Commodity Network Flows, Alexander R. Collins

Theses and Dissertations

As space becomes an increasingly congested domain, the risk of damage to satellite constellations is increasing. In response, there is an increasing need for capabilities for unmanned repair, refueling, and reconstitution (R3) of those constellations. Cislunar orbits offer a promising storage and low-cost transfer solution for on-orbit service vehicles and replacement satellites to leverage those capabilities. This research makes use of mixed-integer linear programming-based logistics models to determine the situations in which a cislunar mission architecture would offer a cost-effective alternative to Earth-based R3. The network models presented in this research make use of the latest developments in Event-Driven Generalized …


Effects Of Carbon-Based Ablation Products On Hypersonic Boundary Layer Stability, Olivia S. Elliott Sep 2019

Effects Of Carbon-Based Ablation Products On Hypersonic Boundary Layer Stability, Olivia S. Elliott

Theses and Dissertations

Hypersonic vehicles require an accurate prediction of the transition of the boundary layer for the design of the thermal protection system due to the high heating rates under turbulent flow. Many thermal protection systems are carbon-based and introduce new species, specifically CO2, into the boundary layer flow which are known to dampen the instabilities that lead to transition for hypersonic vehicles. A Computation Fluid Dynamics study was accomplished examining the concentration of CO2 required to impact boundary layer transition over both sharp and blunt cones. These results were used in conjunction with air-carbon ablation models models to …


Cislunar Trajectory Generation With Sun-Exclusion Zone Constraints Using A Genetic Algorithm And Direct Method Hybridization, Joshua A. Ostman Aug 2019

Cislunar Trajectory Generation With Sun-Exclusion Zone Constraints Using A Genetic Algorithm And Direct Method Hybridization, Joshua A. Ostman

Theses and Dissertations

Space missions to the Moon have received renewed interest in recent decades. Science missions continue to be sent to the Moon, and several space agencies have aspirations of establishing a human presence on the Moon. With the increased number of artificial objects in cislunar space, the problem of tracking these objects arises. Optical sensors are able to track these objects in deep space. However, optical sensors cannot track objects that are close to the Sun as viewed from the observer. This unobservable region is the Sun-exclusion zone (SEZ). This research attempts to create optimal Moon-Earth transfers which are completely in …


Active Control Of A Morphing Wing Aircraft And Failure Analysis For System Reliability, Madison J. Montgomery Mar 2019

Active Control Of A Morphing Wing Aircraft And Failure Analysis For System Reliability, Madison J. Montgomery

Theses and Dissertations

A morphing wing aircraft has the ability to increase the efficiency of an aircraft by better optimizing lift and drag characteristics during a flight. A morphing wing UAV was designed and constructed by AFRL/RQVS and required a means of control and method of characterizing the performance of the aircraft through flight testing. This research presents the design and construction of a control system capable of adjusting the morphing wing shape based on pilot commands and current flight status. The control system was tested and improved following a flight test crash utilizing failure mode analysis.


Piezoelectric Sensor Crack Detection On Airframe Systems, Kevin J. Lin Mar 2019

Piezoelectric Sensor Crack Detection On Airframe Systems, Kevin J. Lin

Theses and Dissertations

In 2008, the Department of Defense published a guidebook for a methodology named Condition-Based Maintenance Plus (CBM+) which capabilities include improving productivity, shortening maintenance cycles, lowering costs, and increasing availability and reliability. This push replaces existing inspection criteria, often conducted as non-destructive testing (NDT), with structural health monitoring (SHM) systems. The SHM system addressed utilizes guided Lamb waves generated by piezoelectric wafer active sensors (PWAS) to detect the existence, size, and location of damage from through-thickness cracks around a rivet hole. The SHM field lacks an experiment testing how small changes in receiver sensor distances affect damage detection. In addition, …


Monocular Visual Odometry For Fixed-Wing Small Unmanned Aircraft Systems, Kyung M. Kim Mar 2019

Monocular Visual Odometry For Fixed-Wing Small Unmanned Aircraft Systems, Kyung M. Kim

Theses and Dissertations

The popularity of small unmanned aircraft systems (SUAS) has exploded in recent years and seen increasing use in both commercial and military sectors. A key interest area for the military is to develop autonomous capabilities for these systems, of which navigation is a fundamental problem. Current navigation solutions suffer from a heavy reliance on a Global Positioning System (GPS). This dependency presents a significant limitation for military applications since many operations are conducted in environments where GPS signals are degraded or actively denied. Therefore, alternative navigation solutions without GPS must be developed and visual methods are one of the most …


Convolutional Neural Network Architecture Study For Aerial Visual Localization, Jedediah M. Berhold Mar 2019

Convolutional Neural Network Architecture Study For Aerial Visual Localization, Jedediah M. Berhold

Theses and Dissertations

In unmanned aerial navigation the ability to determine the aircraft's location is essential for safe flight. The Global Positioning System (GPS) is the default modern application used for geospatial location determination. GPS is extremely robust, very accurate, and has essentially solved aerial localization. Unfortunately, the signals from all Global Navigation Satellite Systems (GNSS) to include GPS can be jammed or spoofed. To this response it is essential to develop alternative systems that could be used to supplement navigation systems, in the event of a lost GNSS signal. Public and governmental satellites have provided large amounts of high-resolution satellite imagery. These …


Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee Mar 2019

Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee

Theses and Dissertations

Aerial magnetic navigation has been shown to be a viable GPS-alternative, but requires a prior-surveyed magnetic map. The miniaturization of atomic magnetometers extends their application to small aircraft at low altitudes where magnetic maps are especially inaccurate or unavailable. This research presents a simultaneous localization and mapping (SLAM) approach to constrain the drift of an inertial navigation system (INS) without the need for a magnetic map. The filter was demonstrated using real measurements on a professional survey flight, and on an AFIT unmanned aerial vehicle.


High Resolution Low-Bandwidth Real-Time Reconnaissance Using Structure From Motion With Planar Homography Estimation, Christian M.A. Arnold Mar 2019

High Resolution Low-Bandwidth Real-Time Reconnaissance Using Structure From Motion With Planar Homography Estimation, Christian M.A. Arnold

Theses and Dissertations

Aerial real-time surveillance exists in a paradigm balancing the constraints of delivering high quality data and transporting data quickly. Typically, to have more of one, sacrifices must be made to the other. This is true of the environment in which an Unmanned Aerial Vehicle (UAV) operates, where real-time communication may be done through a low-bandwidth satellite connection resulting in low-resolution data, and serves as the primary limiting factor in all intelligence operations. Through the use of efficient computer vision techniques, we propose a new Structure from Motion (SfM) method capable of compressing high-resolution data, and delivering that data in real-time. …


Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette Mar 2019

Cyber-Attack Drone Payload Development And Geolocation Via Directional Antennae, Clint M. Bramlette

Theses and Dissertations

The increasing capabilities of commercial drones have led to blossoming drone usage in private sector industries ranging from agriculture to mining to cinema. Commercial drones have made amazing improvements in flight time, flight distance, and payload weight. These same features also offer a unique and unprecedented commodity for wireless hackers -- the ability to gain ‘physical’ proximity to a target without personally having to be anywhere near it. This capability is called Remote Physical Proximity (RPP). By their nature, wireless devices are largely susceptible to sniffing and injection attacks, but only if the attacker can interact with the device via …


Analysis Of Satellite Timing And Navigation Receiver Pseudorange Biases Due To Spreading Code Puncturing And Phase Optimized Constant Envelope Transmission, Nathaniel J. Raquet Mar 2019

Analysis Of Satellite Timing And Navigation Receiver Pseudorange Biases Due To Spreading Code Puncturing And Phase Optimized Constant Envelope Transmission, Nathaniel J. Raquet

Theses and Dissertations

There is a desire for future GPS satellites to be software-defined to enable greater operational flexibility and adapt to a variety of current and future threats. This includes implementing new modulation techniques such as phase optimized constant envelope transmission (POCET) and asymmetric signal authentication methods such as chips message robust authentication (Chimera). Any new GPS signal transmitted must be backwards compatible with the millions of receivers already in use. This thesis shows a variety of tests performed to demonstrate the effects of Chimera and POCET-enabled signals. It is shown through actual radio frequency signal generation, testing the response of current-generation …


Performance Analysis Of Angle Of Arrival Algorithms Applied To Radiofrequency Interference Direction Finding, Taylor S. Barber Mar 2019

Performance Analysis Of Angle Of Arrival Algorithms Applied To Radiofrequency Interference Direction Finding, Taylor S. Barber

Theses and Dissertations

Radiofrequency (RF) interference threatens the functionality of systems that increasingly underpin the daily function of modern society. In recent years there have been multiple incidents of intentional RF spectrum denial using terrestrial interference sources. Because RF based systems are used in safety-of-life applications in both military and civilian contexts, there is need for systems that can quickly locate these interference sources. In order to meet this need, the Air Force Research Laboratory Weapons Directorate is sponsoring the following research to support systems that will be able to quickly geolocate RF interferers using passive angle-of-arrival estimation to triangulate interference sources. This …


High Fidelity Satellite Navigation Receiver Front-End For Advanced Signal Quality Monitoring And Authentication, Andrew D. Braun Mar 2019

High Fidelity Satellite Navigation Receiver Front-End For Advanced Signal Quality Monitoring And Authentication, Andrew D. Braun

Theses and Dissertations

Over the last several years, interest in utilizing foreign satellite timing and navigation (satnav) signals to augment GPS has grown. Doing so is not without risks; foreign satnav signals must be vetted and determined to be trustworthy before use in military applications. Advanced signal quality monitoring methods can help to ensure that only authentic and reliable satnav signals are utilized. To effectively monitor and authenticate signals, the front-end must impress as little distortions upon the received signal as possible. The purpose of this study is to design, fabricate, and test the performance of a high-fidelity satnav receiver front-end for advanced …


Limited-Duty-Cycle Satellite Formation Control Via Differential Drag, Talon A. Townley Mar 2019

Limited-Duty-Cycle Satellite Formation Control Via Differential Drag, Talon A. Townley

Theses and Dissertations

As CubeSat formation flying missions relying on differential drag control become increasingly common, additional missions based on this control must be studied. A mission planning tool is investigated to control the relative spacing of a CubeSat formation where differential drag is the sole control mechanism. System performance is investigated under varying perturbations and a range of system parameters, including limiting the control duty cycle. Optimal solutions based on using a pseudo spectral numerical solver, GPOPS-II, to minimize maneuver time. This study includes the development of a mission planning tool to work with the modeled CubeSat mission to calculate optimal maneuvers …


Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch Mar 2019

Direct Numerical Simulation Of Roughness Induced Hypersonic Boundary Layer Transition On A 7° Half-Angle Cone, Tara E. Crouch

Theses and Dissertations

Direct numerical simulation (DNS) computational fluid dynamic (CFD) calculations were performed on a 30° slice of 7° half-angle cones with increasing nose radii bluntness at Mach 10 while simulating a distributed roughness pattern on the cone surface. These DNS computations were designed to determine if the non-modal transition behavior observed in testing performed at the Arnold Engineering Development Center (AEDC) Hypervelocity Wind Tunnel 9 was induced via distributed surface roughness. When boundary layer transition is dominated by second mode instabilities, an increase in nose radius delays the transition location downstream. However, blunt nose experiments indicated that as the nose radius …


Initial Stage Of Fluid-Structure Interaction Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves Mar 2019

Initial Stage Of Fluid-Structure Interaction Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves

Theses and Dissertations

The analysis of a celestial icosahedron geometry is considered as a potential design for a Vacuum Lighter than Air Vehicle (VLTAV). The goal of the analysis is ultimately to understand the initial fluid-structure interaction of the VLTAV and the surrounding airflow. Up to this point, previous research analyzed the celestial icosahedron VLTAV in relation to withstanding a symmetric sea-level pressure applied to the membrane of the structure. This scenario simulates an internal vacuum being applied in the worst-case atmospheric environmental condition. The next step in analysis is to determine the aerodynamic effects of the geometry. The experimental setup for obtaining …


Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller Mar 2019

Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller

Theses and Dissertations

Recent progress has been made in demonstrating Radial Rotating Detonation Engine (RRDE) technology for use in a compact Auxiliary Power Unit with a rapid response time. Investigation of RRDEs also suggests an increase in stable operating range, which is hypothesized to be due to the additional degree of freedom in the radial direction which the detonation wave can propagate. This investigation seeks to determine if the detonation wave is in fact changing its radial location. High speed photography was used to capture chemiluminescence of the detonation wave within the channel to examine its radial location, which was found to vary …


Wall Model Large Eddy Simulation Of A Diffusing Serpentine Inlet Duct, Ryan J. Thompson Mar 2019

Wall Model Large Eddy Simulation Of A Diffusing Serpentine Inlet Duct, Ryan J. Thompson

Theses and Dissertations

The modeling focus on serpentine inlet ducts (S-duct), as with any inlet, is to quantify the total pressure recovery and ow distortion after the inlet, which directly impacts the performance of a turbine engine fed by the inlet. Accurate prediction of S-duct ow has yet to be achieved amongst the computational fluid dynamics (CFD) community to improve the reliance on modeling reducing costly testing. While direct numerical simulation of the turbulent ow in an S-duct is too cost prohibitive due to grid scaling with Reynolds number, wall-modeled large eddy simulation (WM-LES) serves as a tractable alternative. US3D, a hypersonic research …


Influence Of Leading Edge Oscillatory Blowing On Time-Accurate Dynamic Store Separation, Ryan G. Saunders Mar 2019

Influence Of Leading Edge Oscillatory Blowing On Time-Accurate Dynamic Store Separation, Ryan G. Saunders

Theses and Dissertations

The primary objective of this research is to support the static and dynamic characterization and the time-accurate dynamic load data acquisition of store separation from a cavity with leading edge oscillatory blowing. Developing an understanding of, and potentially controlling, pitch bifurcation of a store release is a motivation for this research. The apparatus and data acquisition system was used in a two-part experiment to collect both static and dynamic testing data in the AFIT low speed wind tunnel in speeds of 60, 100, and 120 mph, from Reynolds numbers varying from 5.5x104 to 4.6x105, depending on reference …


Investigation Of Endwall Vortex Manipulation In High Lift Turbines Caused By Active Endwall Forcing, Horatio J. Babcock Mar 2019

Investigation Of Endwall Vortex Manipulation In High Lift Turbines Caused By Active Endwall Forcing, Horatio J. Babcock

Theses and Dissertations

With the increased demand for lighter, more fuel efficient and smaller gas turbine engines, the impetus to reduce the weight and size of the turbine has become apparent. One approach to reduce this weight is to reduce the number of blades in the turbine. However, to maintain power output, each blade must be capable of supporting a greater amount of lift. While several high-lift turbine profiles have been detailed in literature, most of these profiles have increased endwall losses, despite their desirable mid-span characteristics. To mitigate this endwall loss, a number of active and passive flow approaches have been studied …


Multi-Path Automatic Ground Collision Avoidance System For Performance Limited Aircraft With Flight Tests: Project Have Medusa, Kenneth C. Gahan Mar 2019

Multi-Path Automatic Ground Collision Avoidance System For Performance Limited Aircraft With Flight Tests: Project Have Medusa, Kenneth C. Gahan

Theses and Dissertations

A multi-path automatic ground collision avoidance system (Auto-GCAS) for performance limited aircraft was further developed and improved to prevent controlled flight into terrain. This research includes flight test results from the United States Test Pilot School's Test Management Project (TMP) titled Have Multi-Path Escape Decisions Using Sophisticated Algorithms (MEDUSA). Currently, the bomber and mobility air- craft communities lack an Auto-GCAS. The F-16 Auto-GCAS was proven successful for fighter-type aircraft with seven aircraft and eight lives saved from 2014 to 2018. The newly developed and tested Rapidly Selectable Escape Trajectory (RSET) sys- tem included a 5-path implementation which continuously updated at …


Schlieren Imaging And Flow Analysis On A Cone/Flare Model In The Afrl Mach 6 Ludwieg Tube Facility, David A. Labuda Mar 2019

Schlieren Imaging And Flow Analysis On A Cone/Flare Model In The Afrl Mach 6 Ludwieg Tube Facility, David A. Labuda

Theses and Dissertations

High-speed Schlieren photography was utilized to visualize flow in the Air Force Research Laboratory Mach 6 Ludwieg tube facility. A 7° half-angle cone/flare model with variable nosetip radius and flare angle options was used in the study. Testing was performed at two driver tube pressures, generating freestream Reynolds numbers of 10.0x106 and 19.8x106 per meter. The variable-angle flare portion of the model provided a method for adjusting the intensity of the adverse pressure gradient at the cone/flare junction. As expected from existing literature, boundary layer separation along the cone frustum occurred further upstream as the magnitude of the …


Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung Mar 2019

Tracking Shock Movement On The Surface Of An Oscillating, Straked Semispan Delta Wing, Justin A. Pung

Theses and Dissertations

A recent research effort, sponsored by the Air Force Office of Scientific Research, numerically investigated the unsteady aerodynamic flow field around an oscillating, straked, delta wing. The study was centered on determining the importance of the unsteady aerodynamic forces acting as a driver for a nonlinear motion known as limit cycle oscillations. The current effort focused on creating a computational model to compare to the results of previous tests and modeling efforts and discover new information regarding the onset of LCO. The computational model was constructed using the Cartesian overset capabilities of the CREATE-AV™ fixed wing fluid dynamics solver Kestrel. …


Sheet Velocity Measurements Using Laser Absorption Spectroscopy In A Xenon Hall Effect Thruster Plume, Avery W. Leonard Mar 2019

Sheet Velocity Measurements Using Laser Absorption Spectroscopy In A Xenon Hall Effect Thruster Plume, Avery W. Leonard

Theses and Dissertations

A new laser absorption spectroscopy (LAS) velocimetry system, designed to obtain 2D planar velocity fields for ionized Xenon in the plume of a Hall effect thruster by probing the transition of Xe II at 834.72 nm, was implemented at the Air Force Institute of Technology (AFIT) Space Propulsion Analysis and System Simulator (SPASS) Lab vacuum chamber. A single horizontal laser sheet was used to probe singly-ionized Xenon in the plume of a Busek BHT-600 Hall thruster and obtain a histogram of estimated axial velocity, to validate the system. Similar velocities to those obtained by an earlier intrusive characterization of the …


Comparison Of Novel Heuristic And Integer Programming Schedulers For The Usaf Space Surveillance Network, Kanit Dararutana Mar 2019

Comparison Of Novel Heuristic And Integer Programming Schedulers For The Usaf Space Surveillance Network, Kanit Dararutana

Theses and Dissertations

Space is a highly congested and contested domain begetting the importance of prioritizing the Space Situational Awareness (SSA) mission. With increased dependence on space assets, scheduling and tasking of the Space Surveillance Network (SSN) is vitally important to maintaining space dominance. According to the 2004 USSTRATCOM Strategic Directive 505-1 (SD 505-1) the SSN uses centralized tasking, with decentralized scheduling. Enhancing SSA within available resources is paramount, and the development of a centralized SSN scheduler to maximize performance is crucial. This research develops and compares novel scheduling models to a model reflecting the 2004 SD 505-1. Novel schedulers were developed to …


Search-Based Vs. Task-Based Space Surveillance For Ground-Based Telescopes, Fred D. Hertwig Mar 2019

Search-Based Vs. Task-Based Space Surveillance For Ground-Based Telescopes, Fred D. Hertwig

Theses and Dissertations

Persistent Space Situational Awareness (SSA) is one of the top priorities of the DoD. Currently the Space Surveillance Network (SSN) operates using only a task-based method. The goal of this thesis was to compare the current task-based space surveillance performance to a search-based method of space surveillance in the GEO belt region. The performance of a ground telescope network, similar to the Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) network, was modeled and simulated using AGI’s Systems Tool Kit (STK) and Python. The model compared search-based and task-based space surveillance methods by simulating 813 Resident Space Objects (RSOs) on the summer …


Simulation And Piloted Simulator Study Of An Automatic Ground Collision Avoidance System For Performance Limited Aircraft, James D. Carpenter Mar 2019

Simulation And Piloted Simulator Study Of An Automatic Ground Collision Avoidance System For Performance Limited Aircraft, James D. Carpenter

Theses and Dissertations

The F-16 Automatic-Ground Collision Avoidance System (Auto-GCAS) has been a resounding success since implementation in Nov 2014, saving 8 pilots and 7 aircraft from Controlled Flight into Terrain (CFIT). However, there is no implemented Auto- GCAS for "heavy" performance limited aircraft. This research endeavors to expand on the success of F-16 Auto-GCAS to other aircraft in the Air Force inventory such as the C-130, C-17, and B-1. MIL-STD-1797 classifies performance limited aircraft as large, heavy, and low to medium maneuverability. Using a stitched Learjet-25D model (LJ-25D), an Auto-GCAS algorithm was developed to predict multiple escape-maneuver trajectories, compare these paths to …


Optimal And Robust Neural Network Controllers For Proximal Spacecraft Maneuvers, B. Cole George Mar 2019

Optimal And Robust Neural Network Controllers For Proximal Spacecraft Maneuvers, B. Cole George

Theses and Dissertations

Recent successes in machine learning research, buoyed by advances in computational power, have revitalized interest in neural networks and demonstrated their potential in solving complex controls problems. In this research, the reinforcement learning framework is combined with traditional direct shooting methods to generate optimal proximal spacecraft maneuvers. Open-loop and closed-loop feedback controllers, parameterized by multi-layer feed-forward artificial neural networks, are developed with evolutionary and gradient-based optimization algorithms. Utilizing Clohessy- Wiltshire relative motion dynamics, terminally constrained fixed-time, fuel-optimal trajectories are solved for intercept, rendezvous, and natural motion circumnavigation transfer maneuvers using three different thrust models: impulsive, finite, and continuous. In addition …


Control Strategies For Multi-Evaporator Vapor Compression Cycles, Sunderlin D. Jackson Mar 2019

Control Strategies For Multi-Evaporator Vapor Compression Cycles, Sunderlin D. Jackson

Theses and Dissertations

Next-generation military aircraft must be able to handle highly transient thermal loads that exceed the ability of current aircraft thermal subsystems. Vapor compression cycle systems are a particular refrigeration technology that is an attractive solution for dealing with this challenge, due primarily to their high efficiency. However, there are several barriers to realizing the benefits of vapor cycles systems for controlling thermal loads in military aircraft. This thesis focuses on addressing the challenge of controlling vapor cycles in the presence of highly transient evaporator heat loads. Specifically, a linear quadratic regulator (LQR) is designed for a simple vapor cycle system, …


Characterization And Anomalous Diffusion Analysis Of A 100w Low Power Annular Hall Effect Thruster, Megan N. Maikell Mar 2019

Characterization And Anomalous Diffusion Analysis Of A 100w Low Power Annular Hall Effect Thruster, Megan N. Maikell

Theses and Dissertations

A Busek 100W low-power annular Hall effect thruster was characterized to determine the thruster’s best operating parameter range and to study plasma oscillations within the thruster. These experiments were conducted using xenon gas in the Space Propulsion Analysis and System Simulator chamber at the Air Force Institute of Technology on Wright-Patterson Air Force Base. The thruster’s performance characteristics were evaluated at nominal discharge voltages and constant total mass flow rate, solenoid current, and keeper current to determine the operating conditions optimizing divergence angle, beam efficiency, and discharge loss. This was accomplished using a Faraday probe to determine the plume’s current …