Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Metal Thin Film Stiffness Extraction Technique For Surface Acoustic Wave Filters, Travis R. Weismeyer Dec 2018

Metal Thin Film Stiffness Extraction Technique For Surface Acoustic Wave Filters, Travis R. Weismeyer

Electronic Theses and Dissertations

Accurate knowledge of the surface acoustic wave (SAW) properties propagating at the surface of a piezoelectric substrate with thin films, electrodes or temperature compensated films, is critical in SAW filter design to meet the target frequency response, power durability and performance prior to device fabrication. While reliable material constants exist for substrates such as LiNbO3 used in SAW filters, the absolute elastic constants associated with operational thin films used for electrodes or temperature compensation do not exist. Although the bulk values of the constituent materials are known, the composite film/substrate properties are difficult to predict since they depend strongly on …


The Hilbert-Huang Transform: A Theoretical Framework And Applications To Leak Identification In Pressurized Space Modules, Kenneth R. Bundy Aug 2018

The Hilbert-Huang Transform: A Theoretical Framework And Applications To Leak Identification In Pressurized Space Modules, Kenneth R. Bundy

Electronic Theses and Dissertations

Any manned space mission must provide breathable air to its crew. For this reason, air leaks in spacecraft pose a danger to the mission and any astronauts on board. The purpose of this work is twofold: the first is to address the issue of air pressure loss from leaks in spacecraft. Air leaks present a danger to spacecraft crew, and so a method of finding air leaks when they occur is needed. Most leak detection systems localize the leak in some way. Instead, we address the identification of air leaks in a pressurized space module, we aim to determine the …


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen Aug 2018

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed …


Wireless Sensor System For Mild Cognitive Impairment Diagnosis, Ahmed A. Almaghasilah Mr May 2018

Wireless Sensor System For Mild Cognitive Impairment Diagnosis, Ahmed A. Almaghasilah Mr

Electronic Theses and Dissertations

Alzheimer’s disease (AD), which causes decline in the cognitive functions, is the

major lead of dementia. AD begins showing damage in memory, making patients

dependent on caregivers. Treating AD requires early diagnosis of its signs. The

initial sign of AD is mild cognitive impairment (MCI), which is the middle stage

between a healthy patient and one diagnosed with AD. The proposed sleep

monitoring system is capable of diagnosing MCI symptoms.

MCI patients are characterized with sleep fragmentation and sleep disorder. The

sleep fragmentation is defined as awakenings that interrupt the normal sleep. The

proposed system in this thesis uses force …


Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard May 2018

Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard

Electronic Theses and Dissertations

Electrophysiological measurements have been used in recent history to classify instantaneous physiological configurations, e.g., hand gestures. This work investigates the feasibility of working with changes in physiological configurations over time (i.e., longitudinally) using a variety of algorithms from the machine learning domain. We demonstrate a high degree of classification accuracy for a binary classification problem derived from electromyography measurements before and after a 35-day bedrest. The problem difficulty is increased with a more dynamic experiment testing for changes in astronaut sensorimotor performance by taking electromyography and force plate measurements before, during, and after a jump from a small platform. A …