Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Elucidating The Roles Of Astrocyte-Derived Factors In Recovery And Regeneration Following Spinal Cord Injury, Russell E. Thompson May 2019

Elucidating The Roles Of Astrocyte-Derived Factors In Recovery And Regeneration Following Spinal Cord Injury, Russell E. Thompson

McKelvey School of Engineering Theses & Dissertations

Central nervous system (CNS) injury often causes some level of long-term functional deficit, due to the limited regenerative potential of the CNS, that results in a decreased quality of life for patients. CNS regeneration is inhibited partly by the development of a glial scar following insult that is inhibitory to axonal growth. The major cell population responsible for the formation this glial scar are astrocytes, which has led to the belief that astrocytes are primarily inhibitory following injury. Recent work has challenged this conclusion, finding that astrocyte reactivity is heterogeneous and that some astrocytes are pro-regenerative following injury. Astrocyte transplantation …


Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker Dec 2016

Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker

Graduate Theses and Dissertations

Following injury to the central nervous system, extracellular modulations are apparent at

the site of injury, often resulting in a glial scar. Astrocytes are mechanosensitive cells, which can create a neuroinhibitory extracellular environment in response to injury. The aim for this research was to gain a fundamental understanding of the affects a diffuse traumatic brain injury has on the astrocyte extracellular environment after injury. To accomplish this, a bioreactor culturing astrocytes in 3D constructs delivered 150G decelerations with 20% biaxial strain to mimic a traumatic brain injury. Experiments were designed to compare the potential effects of media type, number of …