Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Automatic Cardiac Mri Image Segmentation And Mesh Generation, Ziyuan Li Sep 2023

Automatic Cardiac Mri Image Segmentation And Mesh Generation, Ziyuan Li

McKelvey School of Engineering Theses & Dissertations

Segmenting and reconstructing cardiac anatomical structures from magnetic resonance (MR) images is essential for the quantitative measurement and automatic diagnosis of cardiovascular diseases [1]. However, manual evaluation of the time-series cardiac MRI (CMRI) obtained during routine clinical care are laborious, inefficient, and tends to produce biased and non-reproducible results [2]. This thesis proposes an end-to-end pipeline for automatically segmenting short-axis (SAX) CMRI images and generating high-quality 2D and 3D meshes suitable for finite element analysis. The main advantage of our approach is that it can not only work as a stand-alone pipeline for the automatic CMR image segmentation and mesh …


Enhanced Iot-Based Electrocardiogram Monitoring System With Deep Learning, Jian Ni May 2023

Enhanced Iot-Based Electrocardiogram Monitoring System With Deep Learning, Jian Ni

UNLV Theses, Dissertations, Professional Papers, and Capstones

Due to the rapid development of computing and sensing technologies, Internet of Things (IoT)-based cardiac monitoring plays a crucial role in providing patients with cost-efficient solutions for long-term, continuous, and pervasive electrocardiogram (ECG) monitoring outside a hospital setting. In a typical IoT-based ECG monitoring system, ECG signals are picked up by sensors located on the edge, and then uploaded to the remote cloud servers. ECG interpretation is performed for the collected ECGs in the cloud servers and the analysis results can be made instantly available to the patients as well as their healthcare providers.In this dissertation, we first examine the …


The Role Of Generative Adversarial Networks In Bioimage Analysis And Computational Diagnostics., Ahmed Naglah Dec 2022

The Role Of Generative Adversarial Networks In Bioimage Analysis And Computational Diagnostics., Ahmed Naglah

Electronic Theses and Dissertations

Computational technologies can contribute to the modeling and simulation of the biological environments and activities towards achieving better interpretations, analysis, and understanding. With the emergence of digital pathology, we can observe an increasing demand for more innovative, effective, and efficient computational models. Under the umbrella of artificial intelligence, deep learning mimics the brain’s way in learn complex relationships through data and experiences. In the field of bioimage analysis, models usually comprise discriminative approaches such as classification and segmentation tasks. In this thesis, we study how we can use generative AI models to improve bioimage analysis tasks using Generative Adversarial Networks …


Computer Aided Diagnosis System For Breast Cancer Using Deep Learning., Asma Baccouche Aug 2022

Computer Aided Diagnosis System For Breast Cancer Using Deep Learning., Asma Baccouche

Electronic Theses and Dissertations

The recent rise of big data technology surrounding the electronic systems and developed toolkits gave birth to new promises for Artificial Intelligence (AI). With the continuous use of data-centric systems and machines in our lives, such as social media, surveys, emails, reports, etc., there is no doubt that data has gained the center of attention by scientists and motivated them to provide more decision-making and operational support systems across multiple domains. With the recent breakthroughs in artificial intelligence, the use of machine learning and deep learning models have achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous …


Role Of Deep Learning Techniques In Non-Invasive Diagnosis Of Human Diseases., Hisham Abouelseoud Elsayem Abdeltawab Aug 2022

Role Of Deep Learning Techniques In Non-Invasive Diagnosis Of Human Diseases., Hisham Abouelseoud Elsayem Abdeltawab

Electronic Theses and Dissertations

Machine learning, a sub-discipline in the domain of artificial intelligence, concentrates on algorithms able to learn and/or adapt their structure (e.g., parameters) based on a set of observed data. The adaptation is performed by optimizing over a cost function. Machine learning obtained a great attention in the biomedical community because it offers a promise for improving sensitivity and/or specificity of detection and diagnosis of diseases. It also can increase objectivity of the decision making, decrease the time and effort on health care professionals during the process of disease detection and diagnosis. The potential impact of machine learning is greater than …


Qualitative And Quantitative Improvements For Positron Emission Tomography Using Different Motion Correction Methodologies, Tasmia Rahman Tumpa Dec 2021

Qualitative And Quantitative Improvements For Positron Emission Tomography Using Different Motion Correction Methodologies, Tasmia Rahman Tumpa

Doctoral Dissertations

Positron Emission Tomography (PET) data suffers from low image quality and quantitative accuracy due to different kinds of motion of patients during imaging. Hardware-based motion correction is currently the standard; however, is limited by several constraints, the most important of which is retroactive data correction. Data-driven techniques to perform motion correction in this regard are active areas of research. The motivation behind this work lies in developing a complete data-driven approach to address both motion detection and correction. The work first presents an algorithm based on the positron emission particle tracking (PEPT) technique and makes use of time-of-flight (TOF) information …


A Fully-Automated, Deep Learning-Based Framework For Ct-Based Localization, Segmentation, Verification And Planning Of Metastatic Vertebrae, Tucker Netherton, Tucker James Netherton May 2021

A Fully-Automated, Deep Learning-Based Framework For Ct-Based Localization, Segmentation, Verification And Planning Of Metastatic Vertebrae, Tucker Netherton, Tucker James Netherton

Dissertations & Theses (Open Access)

Palliative radiotherapy is an effective treatment for the palliation of symptoms caused by vertebral metastases. Visible evidence of disease is localized on medical images as part of the treatment planning process. However, complicating factors such as time pressures, anatomic variants in the spine, and similarities in adjacent vertebrae are associated with wrong level treatments of the spine. In addition, erroneous manual contouring of anatomic structures is a major failure mode in radiotherapy treatment planning.

The purpose of this study is to mitigate the challenges associated with treatment planning of the spine by automating the treatment planning process for three-dimensional conformal …


Improving Treatment Of Local Liver Ablation Therapy With Deep Learning And Biomechanical Modeling, Brian Anderson, Kristy Brock, Laurence Court, Carlos Eduardo Cardenas, Erik Cressman, Ankit Patel May 2021

Improving Treatment Of Local Liver Ablation Therapy With Deep Learning And Biomechanical Modeling, Brian Anderson, Kristy Brock, Laurence Court, Carlos Eduardo Cardenas, Erik Cressman, Ankit Patel

Dissertations & Theses (Open Access)

In the United States, colorectal cancer is the third most diagnosed cancer, and 60-70% of patients will develop liver metastasis. While surgical liver resection of metastasis is the standard of care for treatment with curative intent, it is only avai lable to about 20% of patients. For patients who are not surgical candidates, local percutaneous ablation therapy (PTA) has been shown to have a similar 5-year overall survival rate. However, PTA can be a challenging procedure, largely due to spatial uncertainties in the localization of the ablation probe, and in measuring the delivered ablation margin.

For this work, we hypothesized …


Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgery (Mars), Jeremiah Sanders May 2020

Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgery (Mars), Jeremiah Sanders

Dissertations & Theses (Open Access)

Prostate cancer is the second most common cancer in men and the second-leading cause of cancer death in men. Brachytherapy is a highly effective treatment option for prostate cancer, and is the most cost-effective initial treatment among all other therapeutic options for low to intermediate risk patients of prostate cancer. In low-dose-rate (LDR) brachytherapy, verifying the location of the radioactive seeds within the prostate and in relation to critical normal structures after seed implantation is essential to ensuring positive treatment outcomes.

One current gap in knowledge is how to simultaneously image the prostate, surrounding anatomy, and radioactive seeds within the …


Machine Learning Towards General Medical Image Segmentation, Clara Tam Mar 2020

Machine Learning Towards General Medical Image Segmentation, Clara Tam

Electronic Thesis and Dissertation Repository

The quality of patient care associated with diagnostic radiology is proportionate to a physician's workload. Segmentation is a fundamental limiting precursor to diagnostic and therapeutic procedures. Advances in machine learning aims to increase diagnostic efficiency to replace single applications with generalized algorithms. We approached segmentation as a multitask shape regression problem, simultaneously predicting coordinates on an object's contour while jointly capturing global shape information. Shape regression models inherent point correlations to recover ambiguous boundaries not supported by clear edges and region homogeneity. Its capabilities was investigated using multi-output support vector regression (MSVR) on head and neck (HaN) CT images. Subsequently, …


Objective Estimation Of Tracheoesophageal Speech Quality, Yousef S Ettomi Ali Dec 2019

Objective Estimation Of Tracheoesophageal Speech Quality, Yousef S Ettomi Ali

Electronic Thesis and Dissertation Repository

Speech quality estimation for pathological voices is becoming an increasingly important research topic. The assessment of the quality and the degree of severity of a disordered speech is important to the clinical treatment and rehabilitation of patients. In particular, patients who have undergone total laryngectomy (larynx removal) produce Tracheoesophageal (TE) speech. In this thesis, we study the problem of TE speech quality estimation using advanced signal processing approaches. Since it is not possible to have a reference (clean) signal corresponding to a given TE speech (disordered) signal, we investigate in particular the non-intrusive techniques (also called single-ended or blind approaches) …


Extracting Patterns In Medical Claims Data For Predicting Opioid Overdose, Ryan Sanders Dec 2019

Extracting Patterns In Medical Claims Data For Predicting Opioid Overdose, Ryan Sanders

Graduate Theses and Dissertations

The goal of this project is to develop an efficient methodology for extracting features from time-dependent variables in transaction data. Transaction data is collected at varying time intervals making feature extraction more difficult. Unsupervised representational learning techniques are investigated, and the results compared with those from other feature engineering techniques. A successful methodology provides features that improve the accuracy of any machine learning technique. This methodology is then applied to insurance claims data in order to find features to predict whether a patient is at risk of overdosing on opioids. This data covers prescription, inpatient, and outpatient transactions. Features created …


High-Performance Learning Systems Using Low-Precision Nanoscale Devices, Nandakumar Sasidharan Rajalekshmi May 2019

High-Performance Learning Systems Using Low-Precision Nanoscale Devices, Nandakumar Sasidharan Rajalekshmi

Dissertations

Brain-inspired computation promises a paradigm shift in information processing, both in terms of its parallel processing architecture and the ability to learn to tackle problems deemed unsolvable by traditional algorithmic approaches. The computational capability of the human brain is believed to stem from an interconnected network of 100 billion compute nodes (neurons) that interact with each other through approximately 1015 adjustable memory junctions (synapses). The conductance of synapses is modifiable allowing the network to learn and perform various cognitive functions. Artificial neural networks inspired by this architecture have demonstrated even super-human performance in many complex tasks.

Computational systems based …


Process Analytics From Passive Acoustic Emissions Monitoring During Fluidized Bed Pellet Coating In Pharmaceutical Manufacturing, Allan Carter Jun 2018

Process Analytics From Passive Acoustic Emissions Monitoring During Fluidized Bed Pellet Coating In Pharmaceutical Manufacturing, Allan Carter

Electronic Thesis and Dissertation Repository

Piezoelectric microphones were attached to a top spray fluidized bed to provide valuable process signatures. Relationships were developed between sound waves and conditions within the fluidized bed to relay critical quality and performance information. Deep learning analytics were used to extract valuable information from experimental data. Advancements in passive acoustic emissions monitoring will play a key role in optimizing pharmaceutical manufacturing pathways to ensure drug quality and performance.